Orbitrap noise structure and method for noise-unbiased multivariate analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3911895/v1
Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of a high-field Orbitrap mass analyzer integrated into a secondary ion mass spectrometer (OrbiSIMS). Using a stable primary ion beam to provide a well-controlled source of secondary ions from a silver sample, we find that noise has three characteristic regimes (1) at low signals the ion trap detector noise and a censoring algorithm dominate, (2) at intermediate signals counting noise specific to the SIMS emission process is most significant and has Poisson-like statistical properties, and (3) at high signal levels other sources of measurement variation become important and the data are overdispersed relative to Poisson. We developed a generative model for Orbitrap-based mass spectrometry data that directly incorporates the number of ions and accounts for the noise distribution over the entire intensity range. We find, for silver ions, a detection limit of 3.7 ions independent of ion generation rate. Using this understanding, we introduce a new scaling method, termed WSoR, to reduce the effects of noise bias in multivariate analysis and show it is more effective than the most common data preprocessing methods (root mean scaling, Pareto scaling and log transform) for the simple silver data. For more complex biological images with lower signal intensities the WSoR, Pareto and root mean scaling methods have similar performance and are significantly better than no scaling or, especially, log transform.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3911895/v1
- https://www.researchsquare.com/article/rs-3911895/latest.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391928178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391928178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3911895/v1Digital Object Identifier
- Title
-
Orbitrap noise structure and method for noise-unbiased multivariate analysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-19Full publication date if available
- Authors
-
Ian S. Gilmore, Michael R. Keenan, Gustavo F. Trindade, Alexander Pirkl, Clare L. Newell, Yuhong Jin, Konstantin Aizikov, Junting Zhang, Lidija Matjačić, Henrik Arlinghaus, Anya Eyres, Rasmus Havelund, Josephine Bunch, Alex P. Gould, Alexander MakarovList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3911895/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3911895/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3911895/latest.pdfDirect OA link when available
- Concepts
-
Noise (video), Multivariate statistics, Computer science, Multivariate analysis, Statistics, Mathematics, Artificial intelligence, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391928178 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3911895/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3911895/v1 |
| ids.openalex | https://openalex.org/W4391928178 |
| fwci | 6.13160183 |
| type | preprint |
| title | Orbitrap noise structure and method for noise-unbiased multivariate analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9926999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C99498987 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6051784753799438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[0].display_name | Noise (video) |
| concepts[1].id | https://openalex.org/C161584116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5050221085548401 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[1].display_name | Multivariate statistics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4828227460384369 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C38180746 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4199387729167938 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[3].display_name | Multivariate analysis |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4102778732776642 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3336437940597534 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2241469919681549 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.10867691040039062 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/noise |
| keywords[0].score | 0.6051784753799438 |
| keywords[0].display_name | Noise (video) |
| keywords[1].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[1].score | 0.5050221085548401 |
| keywords[1].display_name | Multivariate statistics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4828227460384369 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/multivariate-analysis |
| keywords[3].score | 0.4199387729167938 |
| keywords[3].display_name | Multivariate analysis |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.4102778732776642 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3336437940597534 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.2241469919681549 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.10867691040039062 |
| keywords[7].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3911895/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3911895/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3911895/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059132586 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0981-2318 |
| authorships[0].author.display_name | Ian S. Gilmore |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[0].affiliations[0].raw_affiliation_string | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[0].institutions[0].id | https://openalex.org/I134421475 |
| authorships[0].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | National Physical Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ian Gilmore |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[1].author.id | https://openalex.org/A5049984167 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-4795-8585 |
| authorships[1].author.display_name | Michael R. Keenan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I918155757 |
| authorships[1].affiliations[0].raw_affiliation_string | Independent, Georgetown, Texas, USA |
| authorships[1].institutions[0].id | https://openalex.org/I918155757 |
| authorships[1].institutions[0].ror | https://ror.org/059yd5j13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I918155757 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgetown College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael Keenan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Independent, Georgetown, Texas, USA |
| authorships[2].author.id | https://openalex.org/A5051180055 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6998-814X |
| authorships[2].author.display_name | Gustavo F. Trindade |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[2].affiliations[0].raw_affiliation_string | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[2].institutions[0].id | https://openalex.org/I134421475 |
| authorships[2].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | National Physical Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gustavo Trindade |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[3].author.id | https://openalex.org/A5090051495 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Alexander Pirkl |
| authorships[3].affiliations[0].raw_affiliation_string | ION-TOF |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alexander Pirkl |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ION-TOF |
| authorships[4].author.id | https://openalex.org/A5034906392 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1809-2305 |
| authorships[4].author.display_name | Clare L. Newell |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2801081054 |
| authorships[4].affiliations[0].raw_affiliation_string | The Francis Crick Institute, London, UK |
| authorships[4].institutions[0].id | https://openalex.org/I2801081054 |
| authorships[4].institutions[0].ror | https://ror.org/04tnbqb63 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I2801081054 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | The Francis Crick Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Clare Newell |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Francis Crick Institute, London, UK |
| authorships[5].author.id | https://openalex.org/A5057012368 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2812-0664 |
| authorships[5].author.display_name | Yuhong Jin |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801081054 |
| authorships[5].affiliations[0].raw_affiliation_string | The Francis Crick Institute, London, UK |
| authorships[5].institutions[0].id | https://openalex.org/I2801081054 |
| authorships[5].institutions[0].ror | https://ror.org/04tnbqb63 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801081054 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | The Francis Crick Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuhong Jin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The Francis Crick Institute, London, UK |
| authorships[6].author.id | https://openalex.org/A5079340352 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Konstantin Aizikov |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210153897 |
| authorships[6].affiliations[0].raw_affiliation_string | Thermo Fisher Scientific, 28199 Bremen, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I4210153897 |
| authorships[6].institutions[0].ror | https://ror.org/04428zn91 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210142480, https://openalex.org/I4210153897 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Thermo Fisher Scientific (Germany) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Konstantin Aizikov |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Thermo Fisher Scientific, 28199 Bremen, Germany |
| authorships[7].author.id | https://openalex.org/A5100723094 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0544-4060 |
| authorships[7].author.display_name | Junting Zhang |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[7].affiliations[0].raw_affiliation_string | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[7].institutions[0].id | https://openalex.org/I134421475 |
| authorships[7].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | National Physical Laboratory |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Junting Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[8].author.id | https://openalex.org/A5010291913 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4765-2877 |
| authorships[8].author.display_name | Lidija Matjačić |
| authorships[8].countries | GB, US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[8].affiliations[0].raw_affiliation_string | National Physical Laboratory |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I134421475, https://openalex.org/I4210109969 |
| authorships[8].affiliations[1].raw_affiliation_string | National Physical Laboratory Rasmus Havelund National Physical Laboratory |
| authorships[8].institutions[0].id | https://openalex.org/I134421475 |
| authorships[8].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[8].institutions[0].type | facility |
| authorships[8].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | National Physical Laboratory |
| authorships[8].institutions[1].id | https://openalex.org/I4210109969 |
| authorships[8].institutions[1].ror | https://ror.org/016s8vs02 |
| authorships[8].institutions[1].type | government |
| authorships[8].institutions[1].lineage | https://openalex.org/I1321296531, https://openalex.org/I1343035065, https://openalex.org/I4210109969 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | Physical Measurement Laboratory |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Lidija Matjacic |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | National Physical Laboratory, National Physical Laboratory Rasmus Havelund National Physical Laboratory |
| authorships[9].author.id | https://openalex.org/A5034295599 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9351-3141 |
| authorships[9].author.display_name | Henrik Arlinghaus |
| authorships[9].affiliations[0].raw_affiliation_string | ION-TOF |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Henrik Arlinghaus |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | ION-TOF |
| authorships[10].author.id | https://openalex.org/A5092173314 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Anya Eyres |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[10].affiliations[0].raw_affiliation_string | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[10].institutions[0].id | https://openalex.org/I134421475 |
| authorships[10].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[10].institutions[0].type | facility |
| authorships[10].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | National Physical Laboratory |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Anya Eyres |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[11].author.id | https://openalex.org/A5009899566 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7316-9761 |
| authorships[11].author.display_name | Rasmus Havelund |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[11].affiliations[0].raw_affiliation_string | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[11].institutions[0].id | https://openalex.org/I134421475 |
| authorships[11].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[11].institutions[0].type | facility |
| authorships[11].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | National Physical Laboratory |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Rasmus Havelund |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[12].author.id | https://openalex.org/A5018264411 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-4257-1296 |
| authorships[12].author.display_name | Josephine Bunch |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[12].affiliations[0].raw_affiliation_string | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[12].institutions[0].id | https://openalex.org/I134421475 |
| authorships[12].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[12].institutions[0].type | facility |
| authorships[12].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[12].institutions[0].country_code | GB |
| authorships[12].institutions[0].display_name | National Physical Laboratory |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Josephine Bunch |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | National Physical Laboratory, NiCE-MSI, Teddington, UK |
| authorships[13].author.id | https://openalex.org/A5078678178 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6875-6985 |
| authorships[13].author.display_name | Alex P. Gould |
| authorships[13].countries | GB, US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[13].affiliations[0].raw_affiliation_string | National Physical Laboratory |
| authorships[13].affiliations[1].institution_ids | https://openalex.org/I134421475, https://openalex.org/I4210109969 |
| authorships[13].affiliations[1].raw_affiliation_string | National Physical Laboratory Rasmus Havelund National Physical Laboratory |
| authorships[13].affiliations[2].institution_ids | https://openalex.org/I2801081054 |
| authorships[13].affiliations[2].raw_affiliation_string | The Francis Crick Institute |
| authorships[13].institutions[0].id | https://openalex.org/I134421475 |
| authorships[13].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[13].institutions[0].type | facility |
| authorships[13].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[13].institutions[0].country_code | GB |
| authorships[13].institutions[0].display_name | National Physical Laboratory |
| authorships[13].institutions[1].id | https://openalex.org/I2801081054 |
| authorships[13].institutions[1].ror | https://ror.org/04tnbqb63 |
| authorships[13].institutions[1].type | facility |
| authorships[13].institutions[1].lineage | https://openalex.org/I2801081054 |
| authorships[13].institutions[1].country_code | GB |
| authorships[13].institutions[1].display_name | The Francis Crick Institute |
| authorships[13].institutions[2].id | https://openalex.org/I4210109969 |
| authorships[13].institutions[2].ror | https://ror.org/016s8vs02 |
| authorships[13].institutions[2].type | government |
| authorships[13].institutions[2].lineage | https://openalex.org/I1321296531, https://openalex.org/I1343035065, https://openalex.org/I4210109969 |
| authorships[13].institutions[2].country_code | US |
| authorships[13].institutions[2].display_name | Physical Measurement Laboratory |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Alex Gould |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | National Physical Laboratory, National Physical Laboratory Rasmus Havelund National Physical Laboratory, The Francis Crick Institute |
| authorships[14].author.id | https://openalex.org/A5009421367 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-7046-6709 |
| authorships[14].author.display_name | Alexander Makarov |
| authorships[14].countries | DE, NL |
| authorships[14].affiliations[0].raw_affiliation_string | Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and |
| authorships[14].affiliations[1].institution_ids | https://openalex.org/I4210153897 |
| authorships[14].affiliations[1].raw_affiliation_string | Thermo Fisher Scientific, 28199 Bremen, Germany |
| authorships[14].affiliations[2].institution_ids | https://openalex.org/I193662353 |
| authorships[14].affiliations[2].raw_affiliation_string | Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands |
| authorships[14].institutions[0].id | https://openalex.org/I4210153897 |
| authorships[14].institutions[0].ror | https://ror.org/04428zn91 |
| authorships[14].institutions[0].type | company |
| authorships[14].institutions[0].lineage | https://openalex.org/I4210142480, https://openalex.org/I4210153897 |
| authorships[14].institutions[0].country_code | DE |
| authorships[14].institutions[0].display_name | Thermo Fisher Scientific (Germany) |
| authorships[14].institutions[1].id | https://openalex.org/I193662353 |
| authorships[14].institutions[1].ror | https://ror.org/04pp8hn57 |
| authorships[14].institutions[1].type | education |
| authorships[14].institutions[1].lineage | https://openalex.org/I193662353 |
| authorships[14].institutions[1].country_code | NL |
| authorships[14].institutions[1].display_name | Utrecht University |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Alexander Makarov |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and, Thermo Fisher Scientific, 28199 Bremen, Germany, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3911895/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Orbitrap noise structure and method for noise-unbiased multivariate analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9926999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2406638334, https://openalex.org/W40745829, https://openalex.org/W4318262572, https://openalex.org/W1978357124, https://openalex.org/W1578824628, https://openalex.org/W2032728545, https://openalex.org/W1570805059, https://openalex.org/W4250754046, https://openalex.org/W4243682621, https://openalex.org/W2036849593 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3911895/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3911895/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3911895/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3911895/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3911895/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3911895/v1 |
| publication_date | 2024-02-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2160062394, https://openalex.org/W2505066412, https://openalex.org/W3017343831, https://openalex.org/W4387541155, https://openalex.org/W1982468602, https://openalex.org/W6768058213, https://openalex.org/W2053849622, https://openalex.org/W2127469533, https://openalex.org/W2967503668, https://openalex.org/W2090910993, https://openalex.org/W2114443255, https://openalex.org/W2045850326, https://openalex.org/W2566737484, https://openalex.org/W2889804495, https://openalex.org/W4256562091, https://openalex.org/W2110812878, https://openalex.org/W1991537594, https://openalex.org/W2027603999, https://openalex.org/W4221095865, https://openalex.org/W2767546077, https://openalex.org/W6745019990, https://openalex.org/W2059784307, https://openalex.org/W6676975028, https://openalex.org/W4389396033, https://openalex.org/W2126710644, https://openalex.org/W2074186198, https://openalex.org/W2620867558, https://openalex.org/W3103846090, https://openalex.org/W1585907206, https://openalex.org/W2763148304, https://openalex.org/W2104957669, https://openalex.org/W1456019477, https://openalex.org/W6676047094, https://openalex.org/W2125027820, https://openalex.org/W4316494400, https://openalex.org/W2061950551, https://openalex.org/W4285395477, https://openalex.org/W2103633133, https://openalex.org/W2764922956, https://openalex.org/W4212863985, https://openalex.org/W2971941459, https://openalex.org/W3136463145 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 33, 40, 47, 54, 61, 82, 129, 160, 176 |
| abstract_inverted_index.We | 127, 155 |
| abstract_inverted_index.at | 73, 87, 108 |
| abstract_inverted_index.in | 7, 20, 189 |
| abstract_inverted_index.is | 4, 98, 195 |
| abstract_inverted_index.it | 194 |
| abstract_inverted_index.no | 243 |
| abstract_inverted_index.of | 32, 57, 114, 142, 163, 167, 186 |
| abstract_inverted_index.to | 52, 93, 125, 182 |
| abstract_inverted_index.we | 27, 64, 174 |
| abstract_inverted_index.(1) | 72 |
| abstract_inverted_index.(2) | 86 |
| abstract_inverted_index.(3) | 107 |
| abstract_inverted_index.3.7 | 164 |
| abstract_inverted_index.For | 218 |
| abstract_inverted_index.all | 12 |
| abstract_inverted_index.and | 81, 101, 106, 119, 144, 192, 210, 230, 238 |
| abstract_inverted_index.are | 122, 239 |
| abstract_inverted_index.for | 132, 146, 157, 213 |
| abstract_inverted_index.has | 68, 102 |
| abstract_inverted_index.ion | 42, 50, 77, 168 |
| abstract_inverted_index.log | 211, 247 |
| abstract_inverted_index.low | 74 |
| abstract_inverted_index.new | 177 |
| abstract_inverted_index.or, | 245 |
| abstract_inverted_index.the | 8, 29, 76, 94, 120, 140, 147, 151, 184, 199, 214, 227 |
| abstract_inverted_index.SIMS | 95 |
| abstract_inverted_index.beam | 51 |
| abstract_inverted_index.bias | 19, 188 |
| abstract_inverted_index.data | 24, 121, 136, 202 |
| abstract_inverted_index.find | 65 |
| abstract_inverted_index.from | 60 |
| abstract_inverted_index.have | 235 |
| abstract_inverted_index.high | 109 |
| abstract_inverted_index.into | 39 |
| abstract_inverted_index.ions | 59, 143, 165 |
| abstract_inverted_index.like | 11 |
| abstract_inverted_index.mass | 2, 13, 36, 43, 134 |
| abstract_inverted_index.mean | 206, 232 |
| abstract_inverted_index.more | 196, 219 |
| abstract_inverted_index.most | 99, 200 |
| abstract_inverted_index.over | 150 |
| abstract_inverted_index.root | 231 |
| abstract_inverted_index.show | 193 |
| abstract_inverted_index.than | 198, 242 |
| abstract_inverted_index.that | 66, 137 |
| abstract_inverted_index.this | 172 |
| abstract_inverted_index.trap | 78 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.with | 223 |
| abstract_inverted_index.(root | 205 |
| abstract_inverted_index.Here, | 26 |
| abstract_inverted_index.Using | 46, 171 |
| abstract_inverted_index.WSoR, | 181, 228 |
| abstract_inverted_index.data. | 217 |
| abstract_inverted_index.find, | 156 |
| abstract_inverted_index.ions, | 159 |
| abstract_inverted_index.limit | 162 |
| abstract_inverted_index.lower | 224 |
| abstract_inverted_index.model | 131 |
| abstract_inverted_index.noise | 17, 30, 67, 80, 91, 148, 187 |
| abstract_inverted_index.other | 112 |
| abstract_inverted_index.rate. | 170 |
| abstract_inverted_index.study | 28 |
| abstract_inverted_index.three | 69 |
| abstract_inverted_index.Pareto | 208, 229 |
| abstract_inverted_index.become | 117 |
| abstract_inverted_index.better | 241 |
| abstract_inverted_index.common | 201 |
| abstract_inverted_index.entire | 152 |
| abstract_inverted_index.images | 222 |
| abstract_inverted_index.levels | 111 |
| abstract_inverted_index.number | 141 |
| abstract_inverted_index.range. | 154 |
| abstract_inverted_index.reduce | 183 |
| abstract_inverted_index.signal | 110, 225 |
| abstract_inverted_index.silver | 62, 158, 216 |
| abstract_inverted_index.simple | 215 |
| abstract_inverted_index.source | 56 |
| abstract_inverted_index.stable | 48 |
| abstract_inverted_index.termed | 180 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.complex | 220 |
| abstract_inverted_index.effects | 185 |
| abstract_inverted_index.method, | 179 |
| abstract_inverted_index.methods | 204, 234 |
| abstract_inverted_index.primary | 49 |
| abstract_inverted_index.process | 97 |
| abstract_inverted_index.provide | 53 |
| abstract_inverted_index.regimes | 71 |
| abstract_inverted_index.sample, | 63 |
| abstract_inverted_index.scaling | 178, 209, 233, 244 |
| abstract_inverted_index.signals | 75, 89 |
| abstract_inverted_index.similar | 236 |
| abstract_inverted_index.sources | 113 |
| abstract_inverted_index.However, | 10 |
| abstract_inverted_index.Orbitrap | 1, 35 |
| abstract_inverted_index.Poisson. | 126 |
| abstract_inverted_index.accounts | 145 |
| abstract_inverted_index.analysis | 22, 191 |
| abstract_inverted_index.analyzer | 37 |
| abstract_inverted_index.counting | 90 |
| abstract_inverted_index.detector | 79 |
| abstract_inverted_index.directly | 138 |
| abstract_inverted_index.emission | 96 |
| abstract_inverted_index.relative | 124 |
| abstract_inverted_index.scaling, | 207 |
| abstract_inverted_index.specific | 92 |
| abstract_inverted_index.algorithm | 84 |
| abstract_inverted_index.censoring | 83 |
| abstract_inverted_index.detection | 161 |
| abstract_inverted_index.developed | 128 |
| abstract_inverted_index.dominate, | 85 |
| abstract_inverted_index.effective | 197 |
| abstract_inverted_index.important | 118 |
| abstract_inverted_index.intensity | 153 |
| abstract_inverted_index.introduce | 175 |
| abstract_inverted_index.secondary | 41, 58 |
| abstract_inverted_index.structure | 31 |
| abstract_inverted_index.variation | 116 |
| abstract_inverted_index.biological | 221 |
| abstract_inverted_index.generation | 169 |
| abstract_inverted_index.generative | 130 |
| abstract_inverted_index.high-field | 34 |
| abstract_inverted_index.integrated | 38 |
| abstract_inverted_index.introduces | 18 |
| abstract_inverted_index.transform) | 212 |
| abstract_inverted_index.transform. | 248 |
| abstract_inverted_index.(OrbiSIMS). | 45 |
| abstract_inverted_index.especially, | 246 |
| abstract_inverted_index.independent | 166 |
| abstract_inverted_index.intensities | 226 |
| abstract_inverted_index.measurement | 115 |
| abstract_inverted_index.non-uniform | 15 |
| abstract_inverted_index.performance | 237 |
| abstract_inverted_index.properties, | 105 |
| abstract_inverted_index.significant | 100 |
| abstract_inverted_index.statistical | 104 |
| abstract_inverted_index.Poisson-like | 103 |
| abstract_inverted_index.complicating | 23 |
| abstract_inverted_index.distribution | 149 |
| abstract_inverted_index.incorporates | 139 |
| abstract_inverted_index.intermediate | 88 |
| abstract_inverted_index.multivariate | 21, 190 |
| abstract_inverted_index.spectrometer | 44 |
| abstract_inverted_index.spectrometry | 3, 135 |
| abstract_inverted_index.overdispersed | 123 |
| abstract_inverted_index.preprocessing | 203 |
| abstract_inverted_index.significantly | 240 |
| abstract_inverted_index.Orbitrap-based | 133 |
| abstract_inverted_index.characteristic | 70 |
| abstract_inverted_index.life-sciences. | 9 |
| abstract_inverted_index.spectrometers, | 14 |
| abstract_inverted_index.understanding, | 173 |
| abstract_inverted_index.interpretation. | 25 |
| abstract_inverted_index.well-controlled | 55 |
| abstract_inverted_index.(heteroscedastic) | 16 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5059132586 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 15 |
| corresponding_institution_ids | https://openalex.org/I134421475 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.9218849 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |