Ordinal Analysis of Well-Ordering Principles, Well Quasi-Orders Closure Properties, and $Σ_n$-Collection Schema Article Swipe
The study of well quasi-orders, wqo, is a cornerstone of combinatorics and within wqo theory Kruskal's theorem plays a crucial role. Extending previous proof-theoretic results, we calculate the $Π^1_1$ ordinals of two different versions of labelled Kruskal's theorem: $\forall n \,$ $\mbox{KT}_\ell(n)$ and $\mbox{KT}_ω(n)$; denoting, respectively, all the cases of labelled Kruskal's theorem for trees with an upper bound on the branching degree, and the standard Kruskal's theorem for labelled trees. In order to reach these computations, a key step is to move from Kruskal's theorem, which regards preservation of wqo's, to an equivalent Well-Ordering Principle (WOP), regarding instead preservation of well-orders. Given an ordinal function $g$, WOP$(g)$ amounts to the following principle $\forall X\, [\mbox{WO}(X) \rightarrow \mbox{WO}(g(X))]$, where $WO(X)$ states that ``$X$ is a well-order''. In our case, the two ordinal functions involved are ${g}_{\forall}(X)=\sup_{n}\vartheta(Ω^n \cdot X)$ and ${g}_ω(X)=\vartheta(Ω^ω\! \cdot X)$. In addition to the ordinal analysis of Kruskal's theorem and its related WOP, a series of Well Quasi-orders Principles (WQP) is considered. Given a set operation $G$ that preserves the property of being a wqo, its Well Quasi-orders closure Property, WQP$(G)$, is given by the principle $\forall Q\, [Q\, \mbox{wqo} \rightarrow G(Q)\, \mbox{wqo}]$. Conducting this study, unexpected connections with different principles arising from Ramsey and Computational theory, such as RT$^2_{<\infty}$, CAC, ADS, RT$^1_{<\infty}$, turn up. Lastly, extending and combining previous results, we achieve also the ordinal analysis of the collection schema $\mbox{B}Σ_n$.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.11196
- https://arxiv.org/pdf/2511.11196
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7105978722
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105978722Canonical identifier for this work in OpenAlex
- Title
-
Ordinal Analysis of Well-Ordering Principles, Well Quasi-Orders Closure Properties, and $Σ_n$-Collection SchemaWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
Buriola, Gabriele, Weiermann, AndreasList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.11196Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.11196Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.11196Direct OA link when available
- Concepts
-
Mathematics, Schema (genetic algorithms), Closure (psychology), Discrete mathematics, Calculus (dental), Ordinal optimization, Set function, Property (philosophy), Function (biology), Branching (polymer chemistry), Key (lock), Set (abstract data type), Combinatorics, Algebra over a field, Series (stratigraphy), Ordinal data, Formal concept analysis, Order (exchange), Proposition, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105978722 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7105978722 |
| fwci | 0.0 |
| type | article |
| title | Ordinal Analysis of Well-Ordering Principles, Well Quasi-Orders Closure Properties, and $Σ_n$-Collection Schema |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10374 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.19296637177467346 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Graph Theory Research |
| topics[1].id | https://openalex.org/T12002 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.12958189845085144 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computability, Logic, AI Algorithms |
| topics[2].id | https://openalex.org/T10126 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.12714296579360962 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Logic, programming, and type systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7387148141860962 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C52146309 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5511992573738098 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7431116 |
| concepts[1].display_name | Schema (genetic algorithms) |
| concepts[2].id | https://openalex.org/C146834321 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5095425248146057 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2979672 |
| concepts[2].display_name | Closure (psychology) |
| concepts[3].id | https://openalex.org/C118615104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47604912519454956 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[3].display_name | Discrete mathematics |
| concepts[4].id | https://openalex.org/C2777686260 |
| concepts[4].level | 2 |
| concepts[4].score | 0.37785977125167847 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q144037 |
| concepts[4].display_name | Calculus (dental) |
| concepts[5].id | https://openalex.org/C81386100 |
| concepts[5].level | 3 |
| concepts[5].score | 0.37093326449394226 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7100792 |
| concepts[5].display_name | Ordinal optimization |
| concepts[6].id | https://openalex.org/C15312841 |
| concepts[6].level | 3 |
| concepts[6].score | 0.36835330724716187 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1657198 |
| concepts[6].display_name | Set function |
| concepts[7].id | https://openalex.org/C189950617 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3457222282886505 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[7].display_name | Property (philosophy) |
| concepts[8].id | https://openalex.org/C14036430 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3334760069847107 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[8].display_name | Function (biology) |
| concepts[9].id | https://openalex.org/C206175624 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3276350498199463 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q595731 |
| concepts[9].display_name | Branching (polymer chemistry) |
| concepts[10].id | https://openalex.org/C26517878 |
| concepts[10].level | 2 |
| concepts[10].score | 0.29647761583328247 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[10].display_name | Key (lock) |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.29504793882369995 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2850753366947174 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C136119220 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2753342390060425 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[13].display_name | Algebra over a field |
| concepts[14].id | https://openalex.org/C143724316 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2708209753036499 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[14].display_name | Series (stratigraphy) |
| concepts[15].id | https://openalex.org/C85461838 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2672959268093109 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7100785 |
| concepts[15].display_name | Ordinal data |
| concepts[16].id | https://openalex.org/C76363472 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2665623724460602 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1437394 |
| concepts[16].display_name | Formal concept analysis |
| concepts[17].id | https://openalex.org/C182306322 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2639918625354767 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[17].display_name | Order (exchange) |
| concepts[18].id | https://openalex.org/C2777152325 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2593282163143158 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q108163 |
| concepts[18].display_name | Proposition |
| concepts[19].id | https://openalex.org/C11413529 |
| concepts[19].level | 1 |
| concepts[19].score | 0.2515782117843628 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[19].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/schema |
| keywords[0].score | 0.5511992573738098 |
| keywords[0].display_name | Schema (genetic algorithms) |
| keywords[1].id | https://openalex.org/keywords/closure |
| keywords[1].score | 0.5095425248146057 |
| keywords[1].display_name | Closure (psychology) |
| keywords[2].id | https://openalex.org/keywords/calculus |
| keywords[2].score | 0.37785977125167847 |
| keywords[2].display_name | Calculus (dental) |
| keywords[3].id | https://openalex.org/keywords/ordinal-optimization |
| keywords[3].score | 0.37093326449394226 |
| keywords[3].display_name | Ordinal optimization |
| keywords[4].id | https://openalex.org/keywords/set-function |
| keywords[4].score | 0.36835330724716187 |
| keywords[4].display_name | Set function |
| keywords[5].id | https://openalex.org/keywords/property |
| keywords[5].score | 0.3457222282886505 |
| keywords[5].display_name | Property (philosophy) |
| keywords[6].id | https://openalex.org/keywords/function |
| keywords[6].score | 0.3334760069847107 |
| keywords[6].display_name | Function (biology) |
| keywords[7].id | https://openalex.org/keywords/branching |
| keywords[7].score | 0.3276350498199463 |
| keywords[7].display_name | Branching (polymer chemistry) |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.11196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.11196 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.11196 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Buriola, Gabriele |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Buriola, Gabriele |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A4221522299 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Weiermann, Andreas |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Weiermann, Andreas |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.11196 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Ordinal Analysis of Well-Ordering Principles, Well Quasi-Orders Closure Properties, and $Σ_n$-Collection Schema |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-18T23:46:17.205004 |
| primary_topic.id | https://openalex.org/T10374 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.19296637177467346 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Graph Theory Research |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.11196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.11196 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.11196 |
| primary_location.id | pmh:oai:arXiv.org:2511.11196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.11196 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.11196 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 18, 77, 124, 155, 165, 175 |
| abstract_inverted_index.n | 39 |
| abstract_inverted_index.In | 71, 126, 142 |
| abstract_inverted_index.an | 56, 92, 103 |
| abstract_inverted_index.as | 210 |
| abstract_inverted_index.by | 185 |
| abstract_inverted_index.is | 6, 80, 123, 162, 183 |
| abstract_inverted_index.of | 2, 9, 30, 34, 49, 89, 100, 148, 157, 173, 229 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.to | 73, 81, 91, 109, 144 |
| abstract_inverted_index.we | 25, 223 |
| abstract_inverted_index.$G$ | 168 |
| abstract_inverted_index.Q\, | 189 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.X)$ | 137 |
| abstract_inverted_index.X\, | 114 |
| abstract_inverted_index.\,$ | 40 |
| abstract_inverted_index.all | 46 |
| abstract_inverted_index.and | 11, 42, 63, 138, 151, 206, 219 |
| abstract_inverted_index.are | 134 |
| abstract_inverted_index.for | 53, 68 |
| abstract_inverted_index.its | 152, 177 |
| abstract_inverted_index.key | 78 |
| abstract_inverted_index.our | 127 |
| abstract_inverted_index.set | 166 |
| abstract_inverted_index.the | 27, 47, 60, 64, 110, 129, 145, 171, 186, 226, 230 |
| abstract_inverted_index.two | 31, 130 |
| abstract_inverted_index.up. | 216 |
| abstract_inverted_index.wqo | 13 |
| abstract_inverted_index.$g$, | 106 |
| abstract_inverted_index.ADS, | 213 |
| abstract_inverted_index.CAC, | 212 |
| abstract_inverted_index.WOP, | 154 |
| abstract_inverted_index.Well | 158, 178 |
| abstract_inverted_index.X)$. | 141 |
| abstract_inverted_index.[Q\, | 190 |
| abstract_inverted_index.also | 225 |
| abstract_inverted_index.from | 83, 204 |
| abstract_inverted_index.move | 82 |
| abstract_inverted_index.step | 79 |
| abstract_inverted_index.such | 209 |
| abstract_inverted_index.that | 121, 169 |
| abstract_inverted_index.this | 196 |
| abstract_inverted_index.turn | 215 |
| abstract_inverted_index.well | 3 |
| abstract_inverted_index.with | 55, 200 |
| abstract_inverted_index.wqo, | 5, 176 |
| abstract_inverted_index.(WQP) | 161 |
| abstract_inverted_index.Given | 102, 164 |
| abstract_inverted_index.\cdot | 136, 140 |
| abstract_inverted_index.``$X$ | 122 |
| abstract_inverted_index.being | 174 |
| abstract_inverted_index.bound | 58 |
| abstract_inverted_index.case, | 128 |
| abstract_inverted_index.cases | 48 |
| abstract_inverted_index.given | 184 |
| abstract_inverted_index.order | 72 |
| abstract_inverted_index.plays | 17 |
| abstract_inverted_index.reach | 74 |
| abstract_inverted_index.role. | 20 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.trees | 54 |
| abstract_inverted_index.upper | 57 |
| abstract_inverted_index.where | 118 |
| abstract_inverted_index.which | 86 |
| abstract_inverted_index.(WOP), | 96 |
| abstract_inverted_index.G(Q)\, | 193 |
| abstract_inverted_index.Ramsey | 205 |
| abstract_inverted_index.schema | 232 |
| abstract_inverted_index.series | 156 |
| abstract_inverted_index.states | 120 |
| abstract_inverted_index.study, | 197 |
| abstract_inverted_index.theory | 14 |
| abstract_inverted_index.trees. | 70 |
| abstract_inverted_index.within | 12 |
| abstract_inverted_index.wqo's, | 90 |
| abstract_inverted_index.$WO(X)$ | 119 |
| abstract_inverted_index.Lastly, | 217 |
| abstract_inverted_index.achieve | 224 |
| abstract_inverted_index.amounts | 108 |
| abstract_inverted_index.arising | 203 |
| abstract_inverted_index.closure | 180 |
| abstract_inverted_index.crucial | 19 |
| abstract_inverted_index.degree, | 62 |
| abstract_inverted_index.instead | 98 |
| abstract_inverted_index.ordinal | 104, 131, 146, 227 |
| abstract_inverted_index.regards | 87 |
| abstract_inverted_index.related | 153 |
| abstract_inverted_index.theorem | 16, 52, 67, 150 |
| abstract_inverted_index.theory, | 208 |
| abstract_inverted_index.$\forall | 38, 113, 188 |
| abstract_inverted_index.$Π^1_1$ | 28 |
| abstract_inverted_index.WOP$(g)$ | 107 |
| abstract_inverted_index.addition | 143 |
| abstract_inverted_index.analysis | 147, 228 |
| abstract_inverted_index.function | 105 |
| abstract_inverted_index.involved | 133 |
| abstract_inverted_index.labelled | 35, 50, 69 |
| abstract_inverted_index.ordinals | 29 |
| abstract_inverted_index.previous | 22, 221 |
| abstract_inverted_index.property | 172 |
| abstract_inverted_index.results, | 24, 222 |
| abstract_inverted_index.standard | 65 |
| abstract_inverted_index.theorem, | 85 |
| abstract_inverted_index.theorem: | 37 |
| abstract_inverted_index.versions | 33 |
| abstract_inverted_index.Extending | 21 |
| abstract_inverted_index.Kruskal's | 15, 36, 51, 66, 84, 149 |
| abstract_inverted_index.Principle | 95 |
| abstract_inverted_index.Property, | 181 |
| abstract_inverted_index.WQP$(G)$, | 182 |
| abstract_inverted_index.branching | 61 |
| abstract_inverted_index.calculate | 26 |
| abstract_inverted_index.combining | 220 |
| abstract_inverted_index.denoting, | 44 |
| abstract_inverted_index.different | 32, 201 |
| abstract_inverted_index.extending | 218 |
| abstract_inverted_index.following | 111 |
| abstract_inverted_index.functions | 132 |
| abstract_inverted_index.operation | 167 |
| abstract_inverted_index.preserves | 170 |
| abstract_inverted_index.principle | 112, 187 |
| abstract_inverted_index.regarding | 97 |
| abstract_inverted_index.Conducting | 195 |
| abstract_inverted_index.Principles | 160 |
| abstract_inverted_index.\mbox{wqo} | 191 |
| abstract_inverted_index.collection | 231 |
| abstract_inverted_index.equivalent | 93 |
| abstract_inverted_index.principles | 202 |
| abstract_inverted_index.unexpected | 198 |
| abstract_inverted_index.\rightarrow | 116, 192 |
| abstract_inverted_index.connections | 199 |
| abstract_inverted_index.considered. | 163 |
| abstract_inverted_index.cornerstone | 8 |
| abstract_inverted_index.Quasi-orders | 159, 179 |
| abstract_inverted_index.preservation | 88, 99 |
| abstract_inverted_index.well-orders. | 101 |
| abstract_inverted_index.Computational | 207 |
| abstract_inverted_index.Well-Ordering | 94 |
| abstract_inverted_index.[\mbox{WO}(X) | 115 |
| abstract_inverted_index.\mbox{wqo}]$. | 194 |
| abstract_inverted_index.combinatorics | 10 |
| abstract_inverted_index.computations, | 76 |
| abstract_inverted_index.quasi-orders, | 4 |
| abstract_inverted_index.respectively, | 45 |
| abstract_inverted_index.well-order''. | 125 |
| abstract_inverted_index.$\mbox{B}Σ_n$. | 233 |
| abstract_inverted_index.proof-theoretic | 23 |
| abstract_inverted_index.RT$^1_{<\infty}$, | 214 |
| abstract_inverted_index.RT$^2_{<\infty}$, | 211 |
| abstract_inverted_index.$\mbox{KT}_ω(n)$; | 43 |
| abstract_inverted_index.\mbox{WO}(g(X))]$, | 117 |
| abstract_inverted_index.$\mbox{KT}_\ell(n)$ | 41 |
| abstract_inverted_index.${g}_ω(X)=\vartheta(Ω^ω\! | 139 |
| abstract_inverted_index.${g}_{\forall}(X)=\sup_{n}\vartheta(Ω^n | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.84539012 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |