Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2004.08426
OAR segmentation is a critical step in radiotherapy of head and neck (H&N) cancer, where inconsistencies across radiation oncologists and prohibitive labor costs motivate automated approaches. However, leading methods using standard fully convolutional network workflows that are challenged when the number of OARs becomes large, e.g. > 40. For such scenarios, insights can be gained from the stratification approaches seen in manual clinical OAR delineation. This is the goal of our work, where we introduce stratified organ at risk segmentation (SOARS), an approach that stratifies OARs into anchor, mid-level, and small & hard (S&H) categories. SOARS stratifies across two dimensions. The first dimension is that distinct processing pipelines are used for each OAR category. In particular, inspired by clinical practices, anchor OARs are used to guide the mid-level and S&H categories. The second dimension is that distinct network architectures are used to manage the significant contrast, size, and anatomy variations between different OARs. We use differentiable neural architecture search (NAS), allowing the network to choose among 2D, 3D or Pseudo-3D convolutions. Extensive 4-fold cross-validation on 142 H&N cancer patients with 42 manually labeled OARs, the most comprehensive OAR dataset to date, demonstrates that both pipeline- and NAS-stratification significantly improves quantitative performance over the state-of-the-art (from 69.52% to 73.68% in absolute Dice scores). Thus, SOARS provides a powerful and principled means to manage the highly complex segmentation space of OARs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2004.08426
- https://arxiv.org/pdf/2004.08426
- OA Status
- green
- Cited By
- 14
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3017362563
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3017362563Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2004.08426Digital Object Identifier
- Title
-
Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-17Full publication date if available
- Authors
-
Dazhou Guo, Dakai Jin, Zhuotun Zhu, Tsung‐Ying Ho, Adam P. Harrison, Chun-Hung Chao, Jing Xiao, Alan Yuille, Chien‐Yu Lin, Le LüList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.08426Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2004.08426Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.08426Direct OA link when available
- Concepts
-
Segmentation, Computer science, Pipeline (software), Artificial intelligence, Dimension (graph theory), Dice, Head and neck, Convolutional neural network, Artificial neural network, Stratification (seeds), Head and neck cancer, Workflow, Risk stratification, Medical physics, Medicine, Radiation therapy, Radiology, Mathematics, Statistics, Surgery, Biology, Internal medicine, Pure mathematics, Germination, Dormancy, Botany, Seed dormancy, Programming language, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 2, 2021: 8, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3017362563 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2004.08426 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.08426 |
| ids.mag | 3017362563 |
| ids.openalex | https://openalex.org/W3017362563 |
| fwci | 2.90523185 |
| type | preprint |
| title | Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10307 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2733 |
| topics[0].subfield.display_name | Otorhinolaryngology |
| topics[0].display_name | Head and Neck Cancer Studies |
| topics[1].id | https://openalex.org/T10358 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3108 |
| topics[1].subfield.display_name | Radiation |
| topics[1].display_name | Advanced Radiotherapy Techniques |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7676742076873779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5658397674560547 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C43521106 |
| concepts[2].level | 2 |
| concepts[2].score | 0.544550895690918 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[2].display_name | Pipeline (software) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5420374274253845 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C33676613 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5230132937431335 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[4].display_name | Dimension (graph theory) |
| concepts[5].id | https://openalex.org/C22029948 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4946996867656708 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[5].display_name | Dice |
| concepts[6].id | https://openalex.org/C3018411727 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49142587184906006 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3867488 |
| concepts[6].display_name | Head and neck |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4800318777561188 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46669700741767883 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C192943249 |
| concepts[9].level | 5 |
| concepts[9].score | 0.43687212467193604 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1893382 |
| concepts[9].display_name | Stratification (seeds) |
| concepts[10].id | https://openalex.org/C2776530083 |
| concepts[10].level | 3 |
| concepts[10].score | 0.42600396275520325 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1783924 |
| concepts[10].display_name | Head and neck cancer |
| concepts[11].id | https://openalex.org/C177212765 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4259762167930603 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[11].display_name | Workflow |
| concepts[12].id | https://openalex.org/C3020404979 |
| concepts[12].level | 2 |
| concepts[12].score | 0.410253643989563 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1058438 |
| concepts[12].display_name | Risk stratification |
| concepts[13].id | https://openalex.org/C19527891 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3689926266670227 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[13].display_name | Medical physics |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.28017592430114746 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C509974204 |
| concepts[15].level | 2 |
| concepts[15].score | 0.279986709356308 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q180507 |
| concepts[15].display_name | Radiation therapy |
| concepts[16].id | https://openalex.org/C126838900 |
| concepts[16].level | 1 |
| concepts[16].score | 0.17529377341270447 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[16].display_name | Radiology |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.1587831676006317 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.152086079120636 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C141071460 |
| concepts[19].level | 1 |
| concepts[19].score | 0.1366836428642273 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[19].display_name | Surgery |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.08495524525642395 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C126322002 |
| concepts[21].level | 1 |
| concepts[21].score | 0.08372336626052856 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[21].display_name | Internal medicine |
| concepts[22].id | https://openalex.org/C202444582 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[22].display_name | Pure mathematics |
| concepts[23].id | https://openalex.org/C100701293 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q193838 |
| concepts[23].display_name | Germination |
| concepts[24].id | https://openalex.org/C3527866 |
| concepts[24].level | 3 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q162267 |
| concepts[24].display_name | Dormancy |
| concepts[25].id | https://openalex.org/C59822182 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[25].display_name | Botany |
| concepts[26].id | https://openalex.org/C88548481 |
| concepts[26].level | 4 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q2397491 |
| concepts[26].display_name | Seed dormancy |
| concepts[27].id | https://openalex.org/C199360897 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[27].display_name | Programming language |
| concepts[28].id | https://openalex.org/C77088390 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[28].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7676742076873779 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5658397674560547 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pipeline |
| keywords[2].score | 0.544550895690918 |
| keywords[2].display_name | Pipeline (software) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5420374274253845 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/dimension |
| keywords[4].score | 0.5230132937431335 |
| keywords[4].display_name | Dimension (graph theory) |
| keywords[5].id | https://openalex.org/keywords/dice |
| keywords[5].score | 0.4946996867656708 |
| keywords[5].display_name | Dice |
| keywords[6].id | https://openalex.org/keywords/head-and-neck |
| keywords[6].score | 0.49142587184906006 |
| keywords[6].display_name | Head and neck |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.4800318777561188 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.46669700741767883 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/stratification |
| keywords[9].score | 0.43687212467193604 |
| keywords[9].display_name | Stratification (seeds) |
| keywords[10].id | https://openalex.org/keywords/head-and-neck-cancer |
| keywords[10].score | 0.42600396275520325 |
| keywords[10].display_name | Head and neck cancer |
| keywords[11].id | https://openalex.org/keywords/workflow |
| keywords[11].score | 0.4259762167930603 |
| keywords[11].display_name | Workflow |
| keywords[12].id | https://openalex.org/keywords/risk-stratification |
| keywords[12].score | 0.410253643989563 |
| keywords[12].display_name | Risk stratification |
| keywords[13].id | https://openalex.org/keywords/medical-physics |
| keywords[13].score | 0.3689926266670227 |
| keywords[13].display_name | Medical physics |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.28017592430114746 |
| keywords[14].display_name | Medicine |
| keywords[15].id | https://openalex.org/keywords/radiation-therapy |
| keywords[15].score | 0.279986709356308 |
| keywords[15].display_name | Radiation therapy |
| keywords[16].id | https://openalex.org/keywords/radiology |
| keywords[16].score | 0.17529377341270447 |
| keywords[16].display_name | Radiology |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.1587831676006317 |
| keywords[17].display_name | Mathematics |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.152086079120636 |
| keywords[18].display_name | Statistics |
| keywords[19].id | https://openalex.org/keywords/surgery |
| keywords[19].score | 0.1366836428642273 |
| keywords[19].display_name | Surgery |
| keywords[20].id | https://openalex.org/keywords/biology |
| keywords[20].score | 0.08495524525642395 |
| keywords[20].display_name | Biology |
| keywords[21].id | https://openalex.org/keywords/internal-medicine |
| keywords[21].score | 0.08372336626052856 |
| keywords[21].display_name | Internal medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2004.08426 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2004.08426 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2004.08426 |
| locations[1].id | doi:10.48550/arxiv.2004.08426 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2004.08426 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5016371650 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5591-6126 |
| authorships[0].author.display_name | Dazhou Guo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dazhou Guo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027768127 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4806-2943 |
| authorships[1].author.display_name | Dakai Jin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dakai Jin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069972117 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhuotun Zhu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhuotun Zhu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5072293450 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8468-2226 |
| authorships[3].author.display_name | Tsung‐Ying Ho |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tsung-Ying Ho |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058215578 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3315-1772 |
| authorships[4].author.display_name | Adam P. Harrison |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Adam P. Harrison |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5089227857 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Chun-Hung Chao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chun-Hung Chao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5016038454 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9615-4749 |
| authorships[6].author.display_name | Jing Xiao |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jing Xiao |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5086706224 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5207-9249 |
| authorships[7].author.display_name | Alan Yuille |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Alan Yuille |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5103054582 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0972-9397 |
| authorships[8].author.display_name | Chien‐Yu Lin |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chien-Yu Lin |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5045227579 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6799-9416 |
| authorships[9].author.display_name | Le Lü |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Le Lu |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.08426 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10307 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2733 |
| primary_topic.subfield.display_name | Otorhinolaryngology |
| primary_topic.display_name | Head and Neck Cancer Studies |
| related_works | https://openalex.org/W3104750253, https://openalex.org/W3021239166, https://openalex.org/W2586273397, https://openalex.org/W4366341510, https://openalex.org/W2390936256, https://openalex.org/W2033590167, https://openalex.org/W1583810757, https://openalex.org/W2001086065, https://openalex.org/W1980398461, https://openalex.org/W1991628107 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2004.08426 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2004.08426 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2004.08426 |
| primary_location.id | pmh:oai:arXiv.org:2004.08426 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2004.08426 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2004.08426 |
| publication_date | 2020-04-17 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2979794459, https://openalex.org/W1976918215, https://openalex.org/W3100175091, https://openalex.org/W2912662889, https://openalex.org/W1901129140, https://openalex.org/W2002489794, https://openalex.org/W2147880316, https://openalex.org/W2963150697, https://openalex.org/W2097580797, https://openalex.org/W2560725027, https://openalex.org/W2128907102, https://openalex.org/W2948198165, https://openalex.org/W2994689640, https://openalex.org/W2896527999, https://openalex.org/W2963136578, https://openalex.org/W2914733968, https://openalex.org/W2081293863, https://openalex.org/W2028129509, https://openalex.org/W2975885948, https://openalex.org/W2922812404, https://openalex.org/W2039079413, https://openalex.org/W2766518925, https://openalex.org/W2038952578, https://openalex.org/W2965658867, https://openalex.org/W2216125271, https://openalex.org/W2593013519, https://openalex.org/W2964132985, https://openalex.org/W2152826865, https://openalex.org/W2137798983, https://openalex.org/W2979472178, https://openalex.org/W2979777575, https://openalex.org/W2889822862, https://openalex.org/W2193350392, https://openalex.org/W2964081807, https://openalex.org/W2066511532, https://openalex.org/W2951104886, https://openalex.org/W2464708700, https://openalex.org/W2963849369, https://openalex.org/W1977484942, https://openalex.org/W2792155504, https://openalex.org/W2888667538, https://openalex.org/W2925142108, https://openalex.org/W1516887802, https://openalex.org/W2963256933, https://openalex.org/W2790533863, https://openalex.org/W2900237898, https://openalex.org/W2106787323, https://openalex.org/W2170187799, https://openalex.org/W2964304707 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 3, 215 |
| abstract_inverted_index.3D | 167 |
| abstract_inverted_index.42 | 180 |
| abstract_inverted_index.In | 114 |
| abstract_inverted_index.We | 153 |
| abstract_inverted_index.an | 81 |
| abstract_inverted_index.at | 77 |
| abstract_inverted_index.be | 53 |
| abstract_inverted_index.by | 117 |
| abstract_inverted_index.in | 6, 60, 208 |
| abstract_inverted_index.is | 2, 66, 103, 134 |
| abstract_inverted_index.of | 8, 41, 69, 227 |
| abstract_inverted_index.on | 174 |
| abstract_inverted_index.or | 168 |
| abstract_inverted_index.to | 124, 141, 163, 189, 206, 220 |
| abstract_inverted_index.we | 73 |
| abstract_inverted_index.142 | 175 |
| abstract_inverted_index.2D, | 166 |
| abstract_inverted_index.40. | 47 |
| abstract_inverted_index.For | 48 |
| abstract_inverted_index.OAR | 0, 63, 112, 187 |
| abstract_inverted_index.The | 100, 131 |
| abstract_inverted_index.and | 10, 19, 89, 128, 147, 195, 217 |
| abstract_inverted_index.are | 36, 108, 122, 139 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.for | 110 |
| abstract_inverted_index.our | 70 |
| abstract_inverted_index.the | 39, 56, 67, 126, 143, 161, 184, 202, 222 |
| abstract_inverted_index.two | 98 |
| abstract_inverted_index.use | 154 |
| abstract_inverted_index.> | 46 |
| abstract_inverted_index.Dice | 210 |
| abstract_inverted_index.OARs | 42, 85, 121 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.both | 193 |
| abstract_inverted_index.e.g. | 45 |
| abstract_inverted_index.each | 111 |
| abstract_inverted_index.from | 55 |
| abstract_inverted_index.goal | 68 |
| abstract_inverted_index.hard | 92 |
| abstract_inverted_index.head | 9 |
| abstract_inverted_index.into | 86 |
| abstract_inverted_index.most | 185 |
| abstract_inverted_index.neck | 11 |
| abstract_inverted_index.over | 201 |
| abstract_inverted_index.risk | 78 |
| abstract_inverted_index.seen | 59 |
| abstract_inverted_index.step | 5 |
| abstract_inverted_index.such | 49 |
| abstract_inverted_index.that | 35, 83, 104, 135, 192 |
| abstract_inverted_index.used | 109, 123, 140 |
| abstract_inverted_index.when | 38 |
| abstract_inverted_index.with | 179 |
| abstract_inverted_index.& | 91 |
| abstract_inverted_index.(from | 204 |
| abstract_inverted_index.OARs, | 183 |
| abstract_inverted_index.OARs. | 152, 228 |
| abstract_inverted_index.SOARS | 95, 213 |
| abstract_inverted_index.Thus, | 212 |
| abstract_inverted_index.among | 165 |
| abstract_inverted_index.costs | 22 |
| abstract_inverted_index.date, | 190 |
| abstract_inverted_index.first | 101 |
| abstract_inverted_index.fully | 31 |
| abstract_inverted_index.guide | 125 |
| abstract_inverted_index.labor | 21 |
| abstract_inverted_index.means | 219 |
| abstract_inverted_index.organ | 76 |
| abstract_inverted_index.size, | 146 |
| abstract_inverted_index.small | 90 |
| abstract_inverted_index.space | 226 |
| abstract_inverted_index.using | 29 |
| abstract_inverted_index.where | 14, 72 |
| abstract_inverted_index.work, | 71 |
| abstract_inverted_index.(NAS), | 159 |
| abstract_inverted_index.4-fold | 172 |
| abstract_inverted_index.69.52% | 205 |
| abstract_inverted_index.73.68% | 207 |
| abstract_inverted_index.across | 16, 97 |
| abstract_inverted_index.anchor | 120 |
| abstract_inverted_index.cancer | 177 |
| abstract_inverted_index.choose | 164 |
| abstract_inverted_index.gained | 54 |
| abstract_inverted_index.highly | 223 |
| abstract_inverted_index.large, | 44 |
| abstract_inverted_index.manage | 142, 221 |
| abstract_inverted_index.manual | 61 |
| abstract_inverted_index.neural | 156 |
| abstract_inverted_index.number | 40 |
| abstract_inverted_index.search | 158 |
| abstract_inverted_index.second | 132 |
| abstract_inverted_index.H&N | 176 |
| abstract_inverted_index.S&H | 129 |
| abstract_inverted_index.anatomy | 148 |
| abstract_inverted_index.anchor, | 87 |
| abstract_inverted_index.becomes | 43 |
| abstract_inverted_index.between | 150 |
| abstract_inverted_index.cancer, | 13 |
| abstract_inverted_index.complex | 224 |
| abstract_inverted_index.dataset | 188 |
| abstract_inverted_index.labeled | 182 |
| abstract_inverted_index.leading | 27 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.network | 33, 137, 162 |
| abstract_inverted_index.(SOARS), | 80 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.absolute | 209 |
| abstract_inverted_index.allowing | 160 |
| abstract_inverted_index.approach | 82 |
| abstract_inverted_index.clinical | 62, 118 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.distinct | 105, 136 |
| abstract_inverted_index.improves | 198 |
| abstract_inverted_index.insights | 51 |
| abstract_inverted_index.inspired | 116 |
| abstract_inverted_index.manually | 181 |
| abstract_inverted_index.motivate | 23 |
| abstract_inverted_index.patients | 178 |
| abstract_inverted_index.powerful | 216 |
| abstract_inverted_index.provides | 214 |
| abstract_inverted_index.scores). | 211 |
| abstract_inverted_index.standard | 30 |
| abstract_inverted_index.(H&N) | 12 |
| abstract_inverted_index.(S&H) | 93 |
| abstract_inverted_index.Extensive | 171 |
| abstract_inverted_index.Pseudo-3D | 169 |
| abstract_inverted_index.automated | 24 |
| abstract_inverted_index.category. | 113 |
| abstract_inverted_index.contrast, | 145 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.dimension | 102, 133 |
| abstract_inverted_index.introduce | 74 |
| abstract_inverted_index.mid-level | 127 |
| abstract_inverted_index.pipeline- | 194 |
| abstract_inverted_index.pipelines | 107 |
| abstract_inverted_index.radiation | 17 |
| abstract_inverted_index.workflows | 34 |
| abstract_inverted_index.approaches | 58 |
| abstract_inverted_index.challenged | 37 |
| abstract_inverted_index.mid-level, | 88 |
| abstract_inverted_index.practices, | 119 |
| abstract_inverted_index.principled | 218 |
| abstract_inverted_index.processing | 106 |
| abstract_inverted_index.scenarios, | 50 |
| abstract_inverted_index.stratified | 75 |
| abstract_inverted_index.stratifies | 84, 96 |
| abstract_inverted_index.variations | 149 |
| abstract_inverted_index.approaches. | 25 |
| abstract_inverted_index.categories. | 94, 130 |
| abstract_inverted_index.dimensions. | 99 |
| abstract_inverted_index.oncologists | 18 |
| abstract_inverted_index.particular, | 115 |
| abstract_inverted_index.performance | 200 |
| abstract_inverted_index.prohibitive | 20 |
| abstract_inverted_index.significant | 144 |
| abstract_inverted_index.architecture | 157 |
| abstract_inverted_index.delineation. | 64 |
| abstract_inverted_index.demonstrates | 191 |
| abstract_inverted_index.quantitative | 199 |
| abstract_inverted_index.radiotherapy | 7 |
| abstract_inverted_index.segmentation | 1, 79, 225 |
| abstract_inverted_index.architectures | 138 |
| abstract_inverted_index.comprehensive | 186 |
| abstract_inverted_index.convolutional | 32 |
| abstract_inverted_index.convolutions. | 170 |
| abstract_inverted_index.significantly | 197 |
| abstract_inverted_index.differentiable | 155 |
| abstract_inverted_index.stratification | 57 |
| abstract_inverted_index.inconsistencies | 15 |
| abstract_inverted_index.cross-validation | 173 |
| abstract_inverted_index.state-of-the-art | 203 |
| abstract_inverted_index.NAS-stratification | 196 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.90444495 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |