OTCXR: Rethinking Self-supervised Alignment using Optimal Transport for Chest X-ray Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.11868
Self-supervised learning (SSL) has emerged as a promising technique for analyzing medical modalities such as X-rays due to its ability to learn without annotations. However, conventional SSL methods face challenges in achieving semantic alignment and capturing subtle details, which limits their ability to accurately represent the underlying anatomical structures and pathological features. To address these limitations, we propose OTCXR, a novel SSL framework that leverages optimal transport (OT) to learn dense semantic invariance. By integrating OT with our innovative Cross-Viewpoint Semantics Infusion Module (CV-SIM), OTCXR enhances the model's ability to capture not only local spatial features but also global contextual dependencies across different viewpoints. This approach enriches the effectiveness of SSL in the context of chest radiographs. Furthermore, OTCXR incorporates variance and covariance regularizations within the OT framework to prioritize clinically relevant information while suppressing less informative features. This ensures that the learned representations are comprehensive and discriminative, particularly beneficial for tasks such as thoracic disease diagnosis. We validate OTCXR's efficacy through comprehensive experiments on three publicly available chest X-ray datasets. Our empirical results demonstrate the superiority of OTCXR over state-of-the-art methods across all evaluated tasks, confirming its capability to learn semantically rich representations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.11868
- https://arxiv.org/pdf/2404.11868
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394973303
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394973303Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.11868Digital Object Identifier
- Title
-
OTCXR: Rethinking Self-supervised Alignment using Optimal Transport for Chest X-ray AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-18Full publication date if available
- Authors
-
Azad Singh, Vandan Gorade, Deepak MishraList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.11868Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.11868Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.11868Direct OA link when available
- Concepts
-
Representation (politics), Image (mathematics), Artificial intelligence, Computer science, Pattern recognition (psychology), Natural language processing, Mathematics, Political science, Law, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394973303 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.11868 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.11868 |
| ids.openalex | https://openalex.org/W4394973303 |
| fwci | |
| type | preprint |
| title | OTCXR: Rethinking Self-supervised Alignment using Optimal Transport for Chest X-ray Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9916999936103821 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9868999719619751 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776359362 |
| concepts[0].level | 3 |
| concepts[0].score | 0.726059079170227 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[0].display_name | Representation (politics) |
| concepts[1].id | https://openalex.org/C115961682 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6674468517303467 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[1].display_name | Image (mathematics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5312620997428894 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4741244316101074 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.35486283898353577 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3378782570362091 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.32382869720458984 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09281092882156372 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| concepts[8].id | https://openalex.org/C199539241 |
| concepts[8].level | 1 |
| concepts[8].score | 0.05303153395652771 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[8].display_name | Law |
| concepts[9].id | https://openalex.org/C94625758 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[9].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/representation |
| keywords[0].score | 0.726059079170227 |
| keywords[0].display_name | Representation (politics) |
| keywords[1].id | https://openalex.org/keywords/image |
| keywords[1].score | 0.6674468517303467 |
| keywords[1].display_name | Image (mathematics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5312620997428894 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4741244316101074 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.35486283898353577 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3378782570362091 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.32382869720458984 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/political-science |
| keywords[7].score | 0.09281092882156372 |
| keywords[7].display_name | Political science |
| keywords[8].id | https://openalex.org/keywords/law |
| keywords[8].score | 0.05303153395652771 |
| keywords[8].display_name | Law |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.11868 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.11868 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.11868 |
| locations[1].id | doi:10.48550/arxiv.2404.11868 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.11868 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102272187 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Azad Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Singh, Azad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057901186 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5389-3373 |
| authorships[1].author.display_name | Vandan Gorade |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gorade, Vandan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100770198 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3225-6495 |
| authorships[2].author.display_name | Deepak Mishra |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mishra, Deepak |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.11868 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-20T00:00:00 |
| display_name | OTCXR: Rethinking Self-supervised Alignment using Optimal Transport for Chest X-ray Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9916999936103821 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2062195135, https://openalex.org/W2795079307, https://openalex.org/W2793058541, https://openalex.org/W1983629434, https://openalex.org/W2055929693, https://openalex.org/W4324271173, https://openalex.org/W1967645776, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W3204019825 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.11868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.11868 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.11868 |
| primary_location.id | pmh:oai:arXiv.org:2404.11868 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.11868 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.11868 |
| publication_date | 2024-04-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 59 |
| abstract_inverted_index.By | 73 |
| abstract_inverted_index.OT | 75, 126 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.We | 157 |
| abstract_inverted_index.as | 5, 14, 153 |
| abstract_inverted_index.in | 30, 111 |
| abstract_inverted_index.of | 109, 114, 177 |
| abstract_inverted_index.on | 164 |
| abstract_inverted_index.to | 17, 20, 42, 68, 89, 128, 189 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.Our | 171 |
| abstract_inverted_index.SSL | 26, 61, 110 |
| abstract_inverted_index.all | 183 |
| abstract_inverted_index.and | 34, 49, 121, 146 |
| abstract_inverted_index.are | 144 |
| abstract_inverted_index.but | 96 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 9, 150 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 18, 187 |
| abstract_inverted_index.not | 91 |
| abstract_inverted_index.our | 77 |
| abstract_inverted_index.the | 45, 86, 107, 112, 125, 141, 175 |
| abstract_inverted_index.(OT) | 67 |
| abstract_inverted_index.This | 104, 138 |
| abstract_inverted_index.also | 97 |
| abstract_inverted_index.face | 28 |
| abstract_inverted_index.less | 135 |
| abstract_inverted_index.only | 92 |
| abstract_inverted_index.over | 179 |
| abstract_inverted_index.rich | 192 |
| abstract_inverted_index.such | 13, 152 |
| abstract_inverted_index.that | 63, 140 |
| abstract_inverted_index.with | 76 |
| abstract_inverted_index.(SSL) | 2 |
| abstract_inverted_index.OTCXR | 84, 118, 178 |
| abstract_inverted_index.X-ray | 169 |
| abstract_inverted_index.chest | 115, 168 |
| abstract_inverted_index.dense | 70 |
| abstract_inverted_index.learn | 21, 69, 190 |
| abstract_inverted_index.local | 93 |
| abstract_inverted_index.novel | 60 |
| abstract_inverted_index.tasks | 151 |
| abstract_inverted_index.their | 40 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.three | 165 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.while | 133 |
| abstract_inverted_index.Module | 82 |
| abstract_inverted_index.OTCXR, | 58 |
| abstract_inverted_index.X-rays | 15 |
| abstract_inverted_index.across | 101, 182 |
| abstract_inverted_index.global | 98 |
| abstract_inverted_index.limits | 39 |
| abstract_inverted_index.subtle | 36 |
| abstract_inverted_index.tasks, | 185 |
| abstract_inverted_index.within | 124 |
| abstract_inverted_index.OTCXR's | 159 |
| abstract_inverted_index.ability | 19, 41, 88 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.capture | 90 |
| abstract_inverted_index.context | 113 |
| abstract_inverted_index.disease | 155 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.ensures | 139 |
| abstract_inverted_index.learned | 142 |
| abstract_inverted_index.medical | 11 |
| abstract_inverted_index.methods | 27, 181 |
| abstract_inverted_index.model's | 87 |
| abstract_inverted_index.optimal | 65 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.spatial | 94 |
| abstract_inverted_index.through | 161 |
| abstract_inverted_index.without | 22 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Infusion | 81 |
| abstract_inverted_index.approach | 105 |
| abstract_inverted_index.details, | 37 |
| abstract_inverted_index.efficacy | 160 |
| abstract_inverted_index.enhances | 85 |
| abstract_inverted_index.enriches | 106 |
| abstract_inverted_index.features | 95 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.publicly | 166 |
| abstract_inverted_index.relevant | 131 |
| abstract_inverted_index.semantic | 32, 71 |
| abstract_inverted_index.thoracic | 154 |
| abstract_inverted_index.validate | 158 |
| abstract_inverted_index.variance | 120 |
| abstract_inverted_index.(CV-SIM), | 83 |
| abstract_inverted_index.Semantics | 80 |
| abstract_inverted_index.achieving | 31 |
| abstract_inverted_index.alignment | 33 |
| abstract_inverted_index.analyzing | 10 |
| abstract_inverted_index.available | 167 |
| abstract_inverted_index.capturing | 35 |
| abstract_inverted_index.datasets. | 170 |
| abstract_inverted_index.different | 102 |
| abstract_inverted_index.empirical | 172 |
| abstract_inverted_index.evaluated | 184 |
| abstract_inverted_index.features. | 51, 137 |
| abstract_inverted_index.framework | 62, 127 |
| abstract_inverted_index.leverages | 64 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.represent | 44 |
| abstract_inverted_index.technique | 8 |
| abstract_inverted_index.transport | 66 |
| abstract_inverted_index.accurately | 43 |
| abstract_inverted_index.anatomical | 47 |
| abstract_inverted_index.beneficial | 149 |
| abstract_inverted_index.capability | 188 |
| abstract_inverted_index.challenges | 29 |
| abstract_inverted_index.clinically | 130 |
| abstract_inverted_index.confirming | 186 |
| abstract_inverted_index.contextual | 99 |
| abstract_inverted_index.covariance | 122 |
| abstract_inverted_index.diagnosis. | 156 |
| abstract_inverted_index.innovative | 78 |
| abstract_inverted_index.modalities | 12 |
| abstract_inverted_index.prioritize | 129 |
| abstract_inverted_index.structures | 48 |
| abstract_inverted_index.underlying | 46 |
| abstract_inverted_index.demonstrate | 174 |
| abstract_inverted_index.experiments | 163 |
| abstract_inverted_index.information | 132 |
| abstract_inverted_index.informative | 136 |
| abstract_inverted_index.integrating | 74 |
| abstract_inverted_index.invariance. | 72 |
| abstract_inverted_index.superiority | 176 |
| abstract_inverted_index.suppressing | 134 |
| abstract_inverted_index.viewpoints. | 103 |
| abstract_inverted_index.Furthermore, | 117 |
| abstract_inverted_index.annotations. | 23 |
| abstract_inverted_index.conventional | 25 |
| abstract_inverted_index.dependencies | 100 |
| abstract_inverted_index.incorporates | 119 |
| abstract_inverted_index.limitations, | 55 |
| abstract_inverted_index.particularly | 148 |
| abstract_inverted_index.pathological | 50 |
| abstract_inverted_index.radiographs. | 116 |
| abstract_inverted_index.semantically | 191 |
| abstract_inverted_index.comprehensive | 145, 162 |
| abstract_inverted_index.effectiveness | 108 |
| abstract_inverted_index.Cross-Viewpoint | 79 |
| abstract_inverted_index.Self-supervised | 0 |
| abstract_inverted_index.discriminative, | 147 |
| abstract_inverted_index.regularizations | 123 |
| abstract_inverted_index.representations | 143 |
| abstract_inverted_index.representations. | 193 |
| abstract_inverted_index.state-of-the-art | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |