Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest Algorithm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/icc45041.2023.10279819
Most spectrum surveys conducted worldwide demonstrate that the radio-electric spectrum in use at any given location and instant of time is below 25%. Current spectrum management policies and spectrum utilization inefficiency is becoming unsustainable for future development of radio technologies and services. In this context, dynamic spectrum access is a promising technique for improving spectrum utilization efficiency. A key scientific gap is identifying inaccurate spectrum data from hidden nodes that is not homogeneously distributed in the spatial domain and dynamically vary in time and frequency. For bridging this gap, our paper presents the research results of a spectrum feature extraction algorithm based on multi-correlation and Random Forest. Our algorithm is capable of estimating the spectrum utilization pattern in the spatial and frequency domain with a minimum reliability of 92% for a real heterogeneous networking scenario.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icc45041.2023.10279819
- OA Status
- green
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387870399
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387870399Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icc45041.2023.10279819Digital Object Identifier
- Title
-
Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-28Full publication date if available
- Authors
-
Rodney Martínez Alonso, David Plets, Sofie Pollin, Luc Martens, Wout JosephList of authors in order
- Landing page
-
https://doi.org/10.1109/icc45041.2023.10279819Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://biblio.ugent.be/publication/01HQJRQ5T0BD9QJNPKYVPYX2QF/file/01HQJSEZ8DNW0VVTVDZEC1KDX4.pdfDirect OA link when available
- Concepts
-
Computer science, Random forest, Inefficiency, Frequency domain, Outlier, Feature extraction, Anomaly detection, Algorithm, Cognitive radio, k-nearest neighbors algorithm, Data mining, Radio spectrum, Artificial intelligence, Telecommunications, Wireless, Economics, Microeconomics, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387870399 |
|---|---|
| doi | https://doi.org/10.1109/icc45041.2023.10279819 |
| ids.doi | https://doi.org/10.1109/icc45041.2023.10279819 |
| ids.openalex | https://openalex.org/W4387870399 |
| fwci | 0.0 |
| type | article |
| title | Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest Algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4620 |
| biblio.first_page | 4615 |
| topics[0].id | https://openalex.org/T10579 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Cognitive Radio Networks and Spectrum Sensing |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T12131 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Wireless Signal Modulation Classification |
| funders[0].id | https://openalex.org/F4320322603 |
| funders[0].ror | https://ror.org/00cv9y106 |
| funders[0].display_name | Universiteit Gent |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7285625338554382 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6062719821929932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C2778869765 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5443044304847717 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6028363 |
| concepts[2].display_name | Inefficiency |
| concepts[3].id | https://openalex.org/C19118579 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5353659987449646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q786423 |
| concepts[3].display_name | Frequency domain |
| concepts[4].id | https://openalex.org/C79337645 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5046907663345337 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[4].display_name | Outlier |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49221888184547424 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C739882 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4547594487667084 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[6].display_name | Anomaly detection |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4347989857196808 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C149946192 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42777228355407715 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3235733 |
| concepts[8].display_name | Cognitive radio |
| concepts[9].id | https://openalex.org/C113238511 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4240318238735199 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[9].display_name | k-nearest neighbors algorithm |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41753771901130676 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C92545706 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41634953022003174 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q902174 |
| concepts[11].display_name | Radio spectrum |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2627326250076294 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1550421118736267 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C555944384 |
| concepts[14].level | 2 |
| concepts[14].score | 0.09428384900093079 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[14].display_name | Wireless |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C175444787 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[16].display_name | Microeconomics |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7285625338554382 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.6062719821929932 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/inefficiency |
| keywords[2].score | 0.5443044304847717 |
| keywords[2].display_name | Inefficiency |
| keywords[3].id | https://openalex.org/keywords/frequency-domain |
| keywords[3].score | 0.5353659987449646 |
| keywords[3].display_name | Frequency domain |
| keywords[4].id | https://openalex.org/keywords/outlier |
| keywords[4].score | 0.5046907663345337 |
| keywords[4].display_name | Outlier |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.49221888184547424 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/anomaly-detection |
| keywords[6].score | 0.4547594487667084 |
| keywords[6].display_name | Anomaly detection |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4347989857196808 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/cognitive-radio |
| keywords[8].score | 0.42777228355407715 |
| keywords[8].display_name | Cognitive radio |
| keywords[9].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[9].score | 0.4240318238735199 |
| keywords[9].display_name | k-nearest neighbors algorithm |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.41753771901130676 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/radio-spectrum |
| keywords[11].score | 0.41634953022003174 |
| keywords[11].display_name | Radio spectrum |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2627326250076294 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.1550421118736267 |
| keywords[13].display_name | Telecommunications |
| keywords[14].id | https://openalex.org/keywords/wireless |
| keywords[14].score | 0.09428384900093079 |
| keywords[14].display_name | Wireless |
| language | en |
| locations[0].id | doi:10.1109/icc45041.2023.10279819 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICC 2023 - IEEE International Conference on Communications |
| locations[0].landing_page_url | https://doi.org/10.1109/icc45041.2023.10279819 |
| locations[1].id | pmh:oai:lirias2repo.kuleuven.be:20.500.12942/735892 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401954 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Lirias (KU Leuven) |
| locations[1].source.host_organization | https://openalex.org/I99464096 |
| locations[1].source.host_organization_name | KU Leuven |
| locations[1].source.host_organization_lineage | https://openalex.org/I99464096 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://lirias.kuleuven.be/handle/20.500.12942/735892 |
| locations[2].id | pmh:oai:archive.ugent.be:01HQJRQ5T0BD9QJNPKYVPYX2QF |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400477 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Ghent University Academic Bibliography (Ghent University) |
| locations[2].source.host_organization | https://openalex.org/I32597200 |
| locations[2].source.host_organization_name | Ghent University |
| locations[2].source.host_organization_lineage | https://openalex.org/I32597200 |
| locations[2].license | |
| locations[2].pdf_url | https://biblio.ugent.be/publication/01HQJRQ5T0BD9QJNPKYVPYX2QF/file/01HQJSEZ8DNW0VVTVDZEC1KDX4.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ISBN: 9781538674628 |
| locations[2].landing_page_url | http://hdl.handle.net/1854/LU-01HQJRQ5T0BD9QJNPKYVPYX2QF |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018946386 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2529-5944 |
| authorships[0].author.display_name | Rodney Martínez Alonso |
| authorships[0].countries | BE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99464096 |
| authorships[0].affiliations[0].raw_affiliation_string | ESAT - WaveCore - Networked Systems, KU LEUVEN, Leuven, Belgium |
| authorships[0].institutions[0].id | https://openalex.org/I99464096 |
| authorships[0].institutions[0].ror | https://ror.org/05f950310 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[0].institutions[0].country_code | BE |
| authorships[0].institutions[0].display_name | KU Leuven |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rodney Martinez Alonso |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ESAT - WaveCore - Networked Systems, KU LEUVEN, Leuven, Belgium |
| authorships[1].author.id | https://openalex.org/A5021128973 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8879-5076 |
| authorships[1].author.display_name | David Plets |
| authorships[1].countries | BE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[1].affiliations[0].raw_affiliation_string | INTEC - WAVES, imec / Ghent University, Ghent, Belgium |
| authorships[1].institutions[0].id | https://openalex.org/I32597200 |
| authorships[1].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[1].institutions[0].country_code | BE |
| authorships[1].institutions[0].display_name | Ghent University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David Plets |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | INTEC - WAVES, imec / Ghent University, Ghent, Belgium |
| authorships[2].author.id | https://openalex.org/A5028689021 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1470-2076 |
| authorships[2].author.display_name | Sofie Pollin |
| authorships[2].countries | BE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99464096 |
| authorships[2].affiliations[0].raw_affiliation_string | ESAT - WaveCore - Networked Systems, KU LEUVEN, Leuven, Belgium |
| authorships[2].institutions[0].id | https://openalex.org/I99464096 |
| authorships[2].institutions[0].ror | https://ror.org/05f950310 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[2].institutions[0].country_code | BE |
| authorships[2].institutions[0].display_name | KU Leuven |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sofie Pollin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ESAT - WaveCore - Networked Systems, KU LEUVEN, Leuven, Belgium |
| authorships[3].author.id | https://openalex.org/A5024310053 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9948-9157 |
| authorships[3].author.display_name | Luc Martens |
| authorships[3].countries | BE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[3].affiliations[0].raw_affiliation_string | INTEC - WAVES, imec / Ghent University, Ghent, Belgium |
| authorships[3].institutions[0].id | https://openalex.org/I32597200 |
| authorships[3].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[3].institutions[0].country_code | BE |
| authorships[3].institutions[0].display_name | Ghent University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luc Martens |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | INTEC - WAVES, imec / Ghent University, Ghent, Belgium |
| authorships[4].author.id | https://openalex.org/A5018341759 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8807-0673 |
| authorships[4].author.display_name | Wout Joseph |
| authorships[4].countries | BE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[4].affiliations[0].raw_affiliation_string | INTEC - WAVES, imec / Ghent University, Ghent, Belgium |
| authorships[4].institutions[0].id | https://openalex.org/I32597200 |
| authorships[4].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[4].institutions[0].country_code | BE |
| authorships[4].institutions[0].display_name | Ghent University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wout Joseph |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | INTEC - WAVES, imec / Ghent University, Ghent, Belgium |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://biblio.ugent.be/publication/01HQJRQ5T0BD9QJNPKYVPYX2QF/file/01HQJSEZ8DNW0VVTVDZEC1KDX4.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-10-24T00:00:00 |
| display_name | Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10579 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Cognitive Radio Networks and Spectrum Sensing |
| related_works | https://openalex.org/W2236567279, https://openalex.org/W2188389332, https://openalex.org/W4225341666, https://openalex.org/W3046087850, https://openalex.org/W1988869880, https://openalex.org/W185479762, https://openalex.org/W3161816731, https://openalex.org/W2224800885, https://openalex.org/W2392764151, https://openalex.org/W2153872761 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:archive.ugent.be:01HQJRQ5T0BD9QJNPKYVPYX2QF |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400477 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Ghent University Academic Bibliography (Ghent University) |
| best_oa_location.source.host_organization | https://openalex.org/I32597200 |
| best_oa_location.source.host_organization_name | Ghent University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I32597200 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://biblio.ugent.be/publication/01HQJRQ5T0BD9QJNPKYVPYX2QF/file/01HQJSEZ8DNW0VVTVDZEC1KDX4.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/publishedVersion |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | ISBN: 9781538674628 |
| best_oa_location.landing_page_url | http://hdl.handle.net/1854/LU-01HQJRQ5T0BD9QJNPKYVPYX2QF |
| primary_location.id | doi:10.1109/icc45041.2023.10279819 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICC 2023 - IEEE International Conference on Communications |
| primary_location.landing_page_url | https://doi.org/10.1109/icc45041.2023.10279819 |
| publication_date | 2023-05-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3044183495, https://openalex.org/W2790902314, https://openalex.org/W3023182176, https://openalex.org/W3014537413, https://openalex.org/W3139060069, https://openalex.org/W6784505769, https://openalex.org/W2212166199, https://openalex.org/W3002482178, https://openalex.org/W3194721843, https://openalex.org/W2247373664, https://openalex.org/W2343899768, https://openalex.org/W4400716841, https://openalex.org/W3096592914 |
| referenced_works_count | 13 |
| abstract_inverted_index.A | 57 |
| abstract_inverted_index.a | 49, 96, 124, 130 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.at | 12 |
| abstract_inverted_index.in | 10, 74, 81, 117 |
| abstract_inverted_index.is | 20, 31, 48, 61, 70, 109 |
| abstract_inverted_index.of | 18, 37, 95, 111, 127 |
| abstract_inverted_index.on | 102 |
| abstract_inverted_index.92% | 128 |
| abstract_inverted_index.For | 85 |
| abstract_inverted_index.Our | 107 |
| abstract_inverted_index.and | 16, 27, 40, 78, 83, 104, 120 |
| abstract_inverted_index.any | 13 |
| abstract_inverted_index.for | 34, 52, 129 |
| abstract_inverted_index.gap | 60 |
| abstract_inverted_index.key | 58 |
| abstract_inverted_index.not | 71 |
| abstract_inverted_index.our | 89 |
| abstract_inverted_index.the | 7, 75, 92, 113, 118 |
| abstract_inverted_index.use | 11 |
| abstract_inverted_index.25%. | 22 |
| abstract_inverted_index.Most | 0 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.from | 66 |
| abstract_inverted_index.gap, | 88 |
| abstract_inverted_index.real | 131 |
| abstract_inverted_index.that | 6, 69 |
| abstract_inverted_index.this | 43, 87 |
| abstract_inverted_index.time | 19, 82 |
| abstract_inverted_index.vary | 80 |
| abstract_inverted_index.with | 123 |
| abstract_inverted_index.based | 101 |
| abstract_inverted_index.below | 21 |
| abstract_inverted_index.given | 14 |
| abstract_inverted_index.nodes | 68 |
| abstract_inverted_index.paper | 90 |
| abstract_inverted_index.radio | 38 |
| abstract_inverted_index.Random | 105 |
| abstract_inverted_index.access | 47 |
| abstract_inverted_index.domain | 77, 122 |
| abstract_inverted_index.future | 35 |
| abstract_inverted_index.hidden | 67 |
| abstract_inverted_index.Current | 23 |
| abstract_inverted_index.Forest. | 106 |
| abstract_inverted_index.capable | 110 |
| abstract_inverted_index.dynamic | 45 |
| abstract_inverted_index.feature | 98 |
| abstract_inverted_index.instant | 17 |
| abstract_inverted_index.minimum | 125 |
| abstract_inverted_index.pattern | 116 |
| abstract_inverted_index.results | 94 |
| abstract_inverted_index.spatial | 76, 119 |
| abstract_inverted_index.surveys | 2 |
| abstract_inverted_index.becoming | 32 |
| abstract_inverted_index.bridging | 86 |
| abstract_inverted_index.context, | 44 |
| abstract_inverted_index.location | 15 |
| abstract_inverted_index.policies | 26 |
| abstract_inverted_index.presents | 91 |
| abstract_inverted_index.research | 93 |
| abstract_inverted_index.spectrum | 1, 9, 24, 28, 46, 54, 64, 97, 114 |
| abstract_inverted_index.algorithm | 100, 108 |
| abstract_inverted_index.conducted | 3 |
| abstract_inverted_index.frequency | 121 |
| abstract_inverted_index.improving | 53 |
| abstract_inverted_index.promising | 50 |
| abstract_inverted_index.scenario. | 134 |
| abstract_inverted_index.services. | 41 |
| abstract_inverted_index.technique | 51 |
| abstract_inverted_index.worldwide | 4 |
| abstract_inverted_index.estimating | 112 |
| abstract_inverted_index.extraction | 99 |
| abstract_inverted_index.frequency. | 84 |
| abstract_inverted_index.inaccurate | 63 |
| abstract_inverted_index.management | 25 |
| abstract_inverted_index.networking | 133 |
| abstract_inverted_index.scientific | 59 |
| abstract_inverted_index.demonstrate | 5 |
| abstract_inverted_index.development | 36 |
| abstract_inverted_index.distributed | 73 |
| abstract_inverted_index.dynamically | 79 |
| abstract_inverted_index.efficiency. | 56 |
| abstract_inverted_index.identifying | 62 |
| abstract_inverted_index.reliability | 126 |
| abstract_inverted_index.utilization | 29, 55, 115 |
| abstract_inverted_index.inefficiency | 30 |
| abstract_inverted_index.technologies | 39 |
| abstract_inverted_index.heterogeneous | 132 |
| abstract_inverted_index.homogeneously | 72 |
| abstract_inverted_index.unsustainable | 33 |
| abstract_inverted_index.radio-electric | 8 |
| abstract_inverted_index.multi-correlation | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.18718314 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |