Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest Algorithm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.36227/techrxiv.24416629.v1
Most spectrum surveys conducted worldwide demonstrate that the radio-electric spectrum in use at any given location and instant of time is below 25%. Current spectrum management policies and spectrum utilization inefficiency are becoming unsustainable for the future development of radio technologies and services. In this context, dynamic spectrum access is a promising technique for improving spectrum utilization efficiency. A key scientific gap is identifying inaccurate spectrum data from hidden nodes that are not homogeneously distributed in the spatial domain and dynamically vary in time and frequency. For bridging this gap, our paper presents the research results of a spectrum feature extraction algorithm based on multi-correlation and Random Forest. Our algorithm is capable of estimating the spectrum utilization pattern in the spatial and frequency domain with a reliability up to 92% for a real heterogeneous networking scenario.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.36227/techrxiv.24416629.v1
- OA Status
- gold
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388264739
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388264739Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36227/techrxiv.24416629.v1Digital Object Identifier
- Title
-
Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest AlgorithmWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-25Full publication date if available
- Authors
-
Rodney Martínez Alonso, David Plets, Sofie Pollin, Luc Martens, Wout JosephList of authors in order
- Landing page
-
https://doi.org/10.36227/techrxiv.24416629.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36227/techrxiv.24416629.v1Direct OA link when available
- Concepts
-
Computer science, Inefficiency, Outlier, Frequency domain, Random forest, Algorithm, Radio spectrum, Anomaly detection, Correlation, Feature (linguistics), Data mining, Artificial intelligence, Telecommunications, Mathematics, Geometry, Linguistics, Computer vision, Philosophy, Microeconomics, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388264739 |
|---|---|
| doi | https://doi.org/10.36227/techrxiv.24416629.v1 |
| ids.doi | https://doi.org/10.36227/techrxiv.24416629.v1 |
| ids.openalex | https://openalex.org/W4388264739 |
| fwci | 0.0 |
| type | preprint |
| title | Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest Algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10579 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Cognitive Radio Networks and Spectrum Sensing |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9733999967575073 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6612513661384583 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778869765 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5476157665252686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6028363 |
| concepts[1].display_name | Inefficiency |
| concepts[2].id | https://openalex.org/C79337645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5339798927307129 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[2].display_name | Outlier |
| concepts[3].id | https://openalex.org/C19118579 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5279354453086853 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q786423 |
| concepts[3].display_name | Frequency domain |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5187985301017761 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4958735406398773 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C92545706 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43495064973831177 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q902174 |
| concepts[6].display_name | Radio spectrum |
| concepts[7].id | https://openalex.org/C739882 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4237910211086273 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[7].display_name | Anomaly detection |
| concepts[8].id | https://openalex.org/C117220453 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41765254735946655 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[8].display_name | Correlation |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4125870168209076 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4057644307613373 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2490195333957672 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.16419610381126404 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1448027789592743 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C175444787 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[18].display_name | Microeconomics |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6612513661384583 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inefficiency |
| keywords[1].score | 0.5476157665252686 |
| keywords[1].display_name | Inefficiency |
| keywords[2].id | https://openalex.org/keywords/outlier |
| keywords[2].score | 0.5339798927307129 |
| keywords[2].display_name | Outlier |
| keywords[3].id | https://openalex.org/keywords/frequency-domain |
| keywords[3].score | 0.5279354453086853 |
| keywords[3].display_name | Frequency domain |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5187985301017761 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4958735406398773 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/radio-spectrum |
| keywords[6].score | 0.43495064973831177 |
| keywords[6].display_name | Radio spectrum |
| keywords[7].id | https://openalex.org/keywords/anomaly-detection |
| keywords[7].score | 0.4237910211086273 |
| keywords[7].display_name | Anomaly detection |
| keywords[8].id | https://openalex.org/keywords/correlation |
| keywords[8].score | 0.41765254735946655 |
| keywords[8].display_name | Correlation |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.4125870168209076 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.4057644307613373 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2490195333957672 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.16419610381126404 |
| keywords[12].display_name | Telecommunications |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.1448027789592743 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.36227/techrxiv.24416629.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.36227/techrxiv.24416629.v1 |
| locations[1].id | pmh:oai:HAL:hal-04610244v1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ICC 2023 - IEEE International Conference on Communications |
| locations[1].landing_page_url | https://hal.science/hal-04610244 |
| locations[2].id | pmh:oai:figshare.com:article/24416629 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400572 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[2].source.host_organization | https://openalex.org/I196829312 |
| locations[2].source.host_organization_name | La Trobe University |
| locations[2].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://figshare.com/articles/preprint/Outlier_Detection_and_Spectrum_Feature_Extraction_Based_on_Nearest-Neighbors_Correlation_and_Random_Forest_Algorithm/24416629 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018946386 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2529-5944 |
| authorships[0].author.display_name | Rodney Martínez Alonso |
| authorships[0].countries | BE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99464096 |
| authorships[0].affiliations[0].raw_affiliation_string | KU-ESAT - Department of Electrical Engineering [KU Leuven] (Kasteelpark Arenberg 10, B-3001 Heverlee - Belgium) |
| authorships[0].institutions[0].id | https://openalex.org/I99464096 |
| authorships[0].institutions[0].ror | https://ror.org/05f950310 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[0].institutions[0].country_code | BE |
| authorships[0].institutions[0].display_name | KU Leuven |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rodney Martinez Alonso |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | KU-ESAT - Department of Electrical Engineering [KU Leuven] (Kasteelpark Arenberg 10, B-3001 Heverlee - Belgium) |
| authorships[1].author.id | https://openalex.org/A5021128973 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8879-5076 |
| authorships[1].author.display_name | David Plets |
| authorships[1].countries | BE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[1].affiliations[0].raw_affiliation_string | UGENT - Universiteit Gent = Ghent University = Université de Gand (St. Pietersnieuwstraat 33, 9000 Gent, - Belgium) |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210114974 |
| authorships[1].affiliations[1].raw_affiliation_string | IMEC - IMEC (IMEC, Kapeldreef 75, B-3001 Leuven, Belgium - Belgium) |
| authorships[1].institutions[0].id | https://openalex.org/I32597200 |
| authorships[1].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[1].institutions[0].country_code | BE |
| authorships[1].institutions[0].display_name | Ghent University |
| authorships[1].institutions[1].id | https://openalex.org/I4210114974 |
| authorships[1].institutions[1].ror | https://ror.org/02kcbn207 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210114974 |
| authorships[1].institutions[1].country_code | BE |
| authorships[1].institutions[1].display_name | IMEC |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David Plets |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IMEC - IMEC (IMEC, Kapeldreef 75, B-3001 Leuven, Belgium - Belgium), UGENT - Universiteit Gent = Ghent University = Université de Gand (St. Pietersnieuwstraat 33, 9000 Gent, - Belgium) |
| authorships[2].author.id | https://openalex.org/A5028689021 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1470-2076 |
| authorships[2].author.display_name | Sofie Pollin |
| authorships[2].countries | BE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99464096 |
| authorships[2].affiliations[0].raw_affiliation_string | KU-ESAT - Department of Electrical Engineering [KU Leuven] (Kasteelpark Arenberg 10, B-3001 Heverlee - Belgium) |
| authorships[2].institutions[0].id | https://openalex.org/I99464096 |
| authorships[2].institutions[0].ror | https://ror.org/05f950310 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99464096 |
| authorships[2].institutions[0].country_code | BE |
| authorships[2].institutions[0].display_name | KU Leuven |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sofie pollin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | KU-ESAT - Department of Electrical Engineering [KU Leuven] (Kasteelpark Arenberg 10, B-3001 Heverlee - Belgium) |
| authorships[3].author.id | https://openalex.org/A5024310053 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9948-9157 |
| authorships[3].author.display_name | Luc Martens |
| authorships[3].countries | BE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[3].affiliations[0].raw_affiliation_string | UGENT - Universiteit Gent = Ghent University = Université de Gand (St. Pietersnieuwstraat 33, 9000 Gent, - Belgium) |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210114974 |
| authorships[3].affiliations[1].raw_affiliation_string | IMEC - IMEC (IMEC, Kapeldreef 75, B-3001 Leuven, Belgium - Belgium) |
| authorships[3].institutions[0].id | https://openalex.org/I32597200 |
| authorships[3].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[3].institutions[0].country_code | BE |
| authorships[3].institutions[0].display_name | Ghent University |
| authorships[3].institutions[1].id | https://openalex.org/I4210114974 |
| authorships[3].institutions[1].ror | https://ror.org/02kcbn207 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210114974 |
| authorships[3].institutions[1].country_code | BE |
| authorships[3].institutions[1].display_name | IMEC |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luc Martens |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IMEC - IMEC (IMEC, Kapeldreef 75, B-3001 Leuven, Belgium - Belgium), UGENT - Universiteit Gent = Ghent University = Université de Gand (St. Pietersnieuwstraat 33, 9000 Gent, - Belgium) |
| authorships[4].author.id | https://openalex.org/A5018341759 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8807-0673 |
| authorships[4].author.display_name | Wout Joseph |
| authorships[4].countries | BE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[4].affiliations[0].raw_affiliation_string | UGENT - Universiteit Gent = Ghent University = Université de Gand (St. Pietersnieuwstraat 33, 9000 Gent, - Belgium) |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210114974 |
| authorships[4].affiliations[1].raw_affiliation_string | IMEC - IMEC (IMEC, Kapeldreef 75, B-3001 Leuven, Belgium - Belgium) |
| authorships[4].institutions[0].id | https://openalex.org/I32597200 |
| authorships[4].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[4].institutions[0].country_code | BE |
| authorships[4].institutions[0].display_name | Ghent University |
| authorships[4].institutions[1].id | https://openalex.org/I4210114974 |
| authorships[4].institutions[1].ror | https://ror.org/02kcbn207 |
| authorships[4].institutions[1].type | nonprofit |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210114974 |
| authorships[4].institutions[1].country_code | BE |
| authorships[4].institutions[1].display_name | IMEC |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wout Joseph |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IMEC - IMEC (IMEC, Kapeldreef 75, B-3001 Leuven, Belgium - Belgium), UGENT - Universiteit Gent = Ghent University = Université de Gand (St. Pietersnieuwstraat 33, 9000 Gent, - Belgium) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36227/techrxiv.24416629.v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Outlier Detection and Spectrum Feature Extraction Based on Nearest-Neighbors Correlation and Random Forest Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10579 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Cognitive Radio Networks and Spectrum Sensing |
| related_works | https://openalex.org/W2264067234, https://openalex.org/W3124243301, https://openalex.org/W1571502335, https://openalex.org/W1589409554, https://openalex.org/W2759038785, https://openalex.org/W2499612753, https://openalex.org/W3111802945, https://openalex.org/W2946096271, https://openalex.org/W2295423552, https://openalex.org/W3107369729 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.36227/techrxiv.24416629.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.36227/techrxiv.24416629.v1 |
| primary_location.id | doi:10.36227/techrxiv.24416629.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.36227/techrxiv.24416629.v1 |
| publication_date | 2023-10-25 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3139060069, https://openalex.org/W3096592914, https://openalex.org/W3002482178, https://openalex.org/W2790902314, https://openalex.org/W3044183495, https://openalex.org/W3014537413, https://openalex.org/W3194721843, https://openalex.org/W2343899768, https://openalex.org/W4400716841, https://openalex.org/W2212166199 |
| referenced_works_count | 10 |
| abstract_inverted_index.A | 58 |
| abstract_inverted_index.a | 50, 97, 125, 131 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.at | 12 |
| abstract_inverted_index.in | 10, 75, 82, 118 |
| abstract_inverted_index.is | 20, 49, 62, 110 |
| abstract_inverted_index.of | 18, 38, 96, 112 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.to | 128 |
| abstract_inverted_index.up | 127 |
| abstract_inverted_index.92% | 129 |
| abstract_inverted_index.For | 86 |
| abstract_inverted_index.Our | 108 |
| abstract_inverted_index.and | 16, 27, 41, 79, 84, 105, 121 |
| abstract_inverted_index.any | 13 |
| abstract_inverted_index.are | 31, 71 |
| abstract_inverted_index.for | 34, 53, 130 |
| abstract_inverted_index.gap | 61 |
| abstract_inverted_index.key | 59 |
| abstract_inverted_index.not | 72 |
| abstract_inverted_index.our | 90 |
| abstract_inverted_index.the | 7, 35, 76, 93, 114, 119 |
| abstract_inverted_index.use | 11 |
| abstract_inverted_index.25%. | 22 |
| abstract_inverted_index.data | 66 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.gap, | 89 |
| abstract_inverted_index.real | 132 |
| abstract_inverted_index.that | 6, 70 |
| abstract_inverted_index.this | 44, 88 |
| abstract_inverted_index.time | 19, 83 |
| abstract_inverted_index.vary | 81 |
| abstract_inverted_index.with | 124 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.below | 21 |
| abstract_inverted_index.given | 14 |
| abstract_inverted_index.nodes | 69 |
| abstract_inverted_index.paper | 91 |
| abstract_inverted_index.radio | 39 |
| abstract_inverted_index.Random | 106 |
| abstract_inverted_index.access | 48 |
| abstract_inverted_index.domain | 78, 123 |
| abstract_inverted_index.future | 36 |
| abstract_inverted_index.hidden | 68 |
| abstract_inverted_index.Current | 23 |
| abstract_inverted_index.Forest. | 107 |
| abstract_inverted_index.capable | 111 |
| abstract_inverted_index.dynamic | 46 |
| abstract_inverted_index.feature | 99 |
| abstract_inverted_index.instant | 17 |
| abstract_inverted_index.pattern | 117 |
| abstract_inverted_index.results | 95 |
| abstract_inverted_index.spatial | 77, 120 |
| abstract_inverted_index.surveys | 2 |
| abstract_inverted_index.becoming | 32 |
| abstract_inverted_index.bridging | 87 |
| abstract_inverted_index.context, | 45 |
| abstract_inverted_index.location | 15 |
| abstract_inverted_index.policies | 26 |
| abstract_inverted_index.presents | 92 |
| abstract_inverted_index.research | 94 |
| abstract_inverted_index.spectrum | 1, 9, 24, 28, 47, 55, 65, 98, 115 |
| abstract_inverted_index.algorithm | 101, 109 |
| abstract_inverted_index.conducted | 3 |
| abstract_inverted_index.frequency | 122 |
| abstract_inverted_index.improving | 54 |
| abstract_inverted_index.promising | 51 |
| abstract_inverted_index.services. | 42 |
| abstract_inverted_index.technique | 52 |
| abstract_inverted_index.worldwide | 4 |
| abstract_inverted_index.estimating | 113 |
| abstract_inverted_index.extraction | 100 |
| abstract_inverted_index.frequency. | 85 |
| abstract_inverted_index.inaccurate | 64 |
| abstract_inverted_index.management | 25 |
| abstract_inverted_index.networking | 134 |
| abstract_inverted_index.scientific | 60 |
| abstract_inverted_index.demonstrate | 5 |
| abstract_inverted_index.development | 37 |
| abstract_inverted_index.distributed | 74 |
| abstract_inverted_index.dynamically | 80 |
| abstract_inverted_index.efficiency. | 57 |
| abstract_inverted_index.identifying | 63 |
| abstract_inverted_index.reliability | 126 |
| abstract_inverted_index.utilization | 29, 56, 116 |
| abstract_inverted_index.inefficiency | 30 |
| abstract_inverted_index.technologies | 40 |
| abstract_inverted_index.<p>Most | 0 |
| abstract_inverted_index.heterogeneous | 133 |
| abstract_inverted_index.homogeneously | 73 |
| abstract_inverted_index.unsustainable | 33 |
| abstract_inverted_index.radio-electric | 8 |
| abstract_inverted_index.multi-correlation | 104 |
| abstract_inverted_index.scenario.</p> | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.19598583 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |