Outliers as a Source of Overdispersion in Poisson Regression Modelling: Evidence from Simulation and Real Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3329/ijss.v23i2.70105
The Poisson regression model is a well-known technique for modelling count data. However, it is necessary to satisfy the overdispersion assumption in order to fit the Poisson regression model. Due to the overdispersion problem in the Poisson regression model, standard errors might be underestimated, which may lead to a highly misleading inference. There are several tests in the literature to check the presence of overdispersion in the Poisson model. In this study, we apply a regression-based t test to identify the overdispersion. The simulation study and real data example clearly show that the overdispersion in the Poisson model is caused by the existence of outliers. International Journal of Statistical Sciences, Vol. 23(2), November, 2023, pp 31-37
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3329/ijss.v23i2.70105
- https://www.banglajol.info/index.php/ijss/article/download/70105/46981
- OA Status
- hybrid
- Cited By
- 2
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389204943
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389204943Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3329/ijss.v23i2.70105Digital Object Identifier
- Title
-
Outliers as a Source of Overdispersion in Poisson Regression Modelling: Evidence from Simulation and Real DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-30Full publication date if available
- Authors
-
Sohel Rana, Abu Sayed Md. Al Mamun, FM Arifur Rahman, Hanaa ElgohariList of authors in order
- Landing page
-
https://doi.org/10.3329/ijss.v23i2.70105Publisher landing page
- PDF URL
-
https://www.banglajol.info/index.php/ijss/article/download/70105/46981Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.banglajol.info/index.php/ijss/article/download/70105/46981Direct OA link when available
- Concepts
-
Overdispersion, Poisson regression, Quasi-likelihood, Outlier, Poisson distribution, Statistics, Regression analysis, Econometrics, Count data, Mathematics, Zero-inflated model, Regression, Inference, Computer science, Artificial intelligence, Medicine, Population, Environmental healthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389204943 |
|---|---|
| doi | https://doi.org/10.3329/ijss.v23i2.70105 |
| ids.doi | https://doi.org/10.3329/ijss.v23i2.70105 |
| ids.openalex | https://openalex.org/W4389204943 |
| fwci | 1.2771184 |
| type | article |
| title | Outliers as a Source of Overdispersion in Poisson Regression Modelling: Evidence from Simulation and Real Data |
| biblio.issue | 2 |
| biblio.volume | 23 |
| biblio.last_page | 37 |
| biblio.first_page | 31 |
| topics[0].id | https://openalex.org/T10243 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.775600016117096 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Bayesian Inference |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.6854000091552734 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C117236510 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9890300631523132 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7113620 |
| concepts[0].display_name | Overdispersion |
| concepts[1].id | https://openalex.org/C73269764 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8376706838607788 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q954529 |
| concepts[1].display_name | Poisson regression |
| concepts[2].id | https://openalex.org/C91025261 |
| concepts[2].level | 4 |
| concepts[2].score | 0.7810771465301514 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7269460 |
| concepts[2].display_name | Quasi-likelihood |
| concepts[3].id | https://openalex.org/C79337645 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6661316156387329 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[3].display_name | Outlier |
| concepts[4].id | https://openalex.org/C100906024 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6306966543197632 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[4].display_name | Poisson distribution |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5970986485481262 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5614869594573975 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5169259905815125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C33643355 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4959939420223236 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[8].display_name | Count data |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4512636959552765 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C88721176 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4390139579772949 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q966010 |
| concepts[10].display_name | Zero-inflated model |
| concepts[11].id | https://openalex.org/C83546350 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42074719071388245 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[11].display_name | Regression |
| concepts[12].id | https://openalex.org/C2776214188 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41477152705192566 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[12].display_name | Inference |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.31957805156707764 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15319669246673584 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.07167792320251465 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C2908647359 |
| concepts[16].level | 2 |
| concepts[16].score | 0.06355667114257812 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[16].display_name | Population |
| concepts[17].id | https://openalex.org/C99454951 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[17].display_name | Environmental health |
| keywords[0].id | https://openalex.org/keywords/overdispersion |
| keywords[0].score | 0.9890300631523132 |
| keywords[0].display_name | Overdispersion |
| keywords[1].id | https://openalex.org/keywords/poisson-regression |
| keywords[1].score | 0.8376706838607788 |
| keywords[1].display_name | Poisson regression |
| keywords[2].id | https://openalex.org/keywords/quasi-likelihood |
| keywords[2].score | 0.7810771465301514 |
| keywords[2].display_name | Quasi-likelihood |
| keywords[3].id | https://openalex.org/keywords/outlier |
| keywords[3].score | 0.6661316156387329 |
| keywords[3].display_name | Outlier |
| keywords[4].id | https://openalex.org/keywords/poisson-distribution |
| keywords[4].score | 0.6306966543197632 |
| keywords[4].display_name | Poisson distribution |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.5970986485481262 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.5614869594573975 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.5169259905815125 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/count-data |
| keywords[8].score | 0.4959939420223236 |
| keywords[8].display_name | Count data |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.4512636959552765 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/zero-inflated-model |
| keywords[10].score | 0.4390139579772949 |
| keywords[10].display_name | Zero-inflated model |
| keywords[11].id | https://openalex.org/keywords/regression |
| keywords[11].score | 0.42074719071388245 |
| keywords[11].display_name | Regression |
| keywords[12].id | https://openalex.org/keywords/inference |
| keywords[12].score | 0.41477152705192566 |
| keywords[12].display_name | Inference |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.31957805156707764 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.15319669246673584 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.07167792320251465 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/population |
| keywords[16].score | 0.06355667114257812 |
| keywords[16].display_name | Population |
| language | en |
| locations[0].id | doi:10.3329/ijss.v23i2.70105 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4390296644 |
| locations[0].source.issn | 1683-5603 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1683-5603 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Statistical Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://www.banglajol.info/index.php/ijss/article/download/70105/46981 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Statistical Sciences |
| locations[0].landing_page_url | https://doi.org/10.3329/ijss.v23i2.70105 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090637538 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4103-6726 |
| authorships[0].author.display_name | Sohel Rana |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I885507782 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematical & Physical Sciences, East West University, Dhaka-1212, Bangladesh |
| authorships[0].institutions[0].id | https://openalex.org/I885507782 |
| authorships[0].institutions[0].ror | https://ror.org/05p0tzt32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I885507782 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | East West University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sohel Rana |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematical & Physical Sciences, East West University, Dhaka-1212, Bangladesh |
| authorships[1].author.id | https://openalex.org/A5090487551 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0468-8485 |
| authorships[1].author.display_name | Abu Sayed Md. Al Mamun |
| authorships[1].countries | BD |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I902853133 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh |
| authorships[1].institutions[0].id | https://openalex.org/I902853133 |
| authorships[1].institutions[0].ror | https://ror.org/05nnyr510 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I902853133 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | University of Rajshahi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abu Sayed Md Al Mamun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh |
| authorships[2].author.id | https://openalex.org/A5114104371 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | FM Arifur Rahman |
| authorships[2].countries | BD |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I885507782 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematical & Physical Sciences, East West University, Dhaka-1212, Bangladesh |
| authorships[2].institutions[0].id | https://openalex.org/I885507782 |
| authorships[2].institutions[0].ror | https://ror.org/05p0tzt32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I885507782 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | East West University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | FM Arifur Rahman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematical & Physical Sciences, East West University, Dhaka-1212, Bangladesh |
| authorships[3].author.id | https://openalex.org/A5012879266 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9246-1637 |
| authorships[3].author.display_name | Hanaa Elgohari |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I159247623 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Statistics, Faculty of commerce, Mansoura University, Egypt |
| authorships[3].institutions[0].id | https://openalex.org/I159247623 |
| authorships[3].institutions[0].ror | https://ror.org/01k8vtd75 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I159247623 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | Mansoura University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hanaa Elgohari |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Statistics, Faculty of commerce, Mansoura University, Egypt |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.banglajol.info/index.php/ijss/article/download/70105/46981 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Outliers as a Source of Overdispersion in Poisson Regression Modelling: Evidence from Simulation and Real Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10243 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.775600016117096 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Bayesian Inference |
| related_works | https://openalex.org/W4280505828, https://openalex.org/W401609920, https://openalex.org/W2302712328, https://openalex.org/W3162047386, https://openalex.org/W2319668974, https://openalex.org/W1967330102, https://openalex.org/W4210808373, https://openalex.org/W4292722743, https://openalex.org/W2759839044, https://openalex.org/W2047828157 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3329/ijss.v23i2.70105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4390296644 |
| best_oa_location.source.issn | 1683-5603 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1683-5603 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Statistical Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://www.banglajol.info/index.php/ijss/article/download/70105/46981 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Statistical Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3329/ijss.v23i2.70105 |
| primary_location.id | doi:10.3329/ijss.v23i2.70105 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4390296644 |
| primary_location.source.issn | 1683-5603 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1683-5603 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Statistical Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://www.banglajol.info/index.php/ijss/article/download/70105/46981 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Statistical Sciences |
| primary_location.landing_page_url | https://doi.org/10.3329/ijss.v23i2.70105 |
| publication_date | 2023-11-30 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1493790738, https://openalex.org/W3042983787, https://openalex.org/W1972707698, https://openalex.org/W2040385951, https://openalex.org/W2135451102, https://openalex.org/W132138762, https://openalex.org/W6637403874, https://openalex.org/W3122731489, https://openalex.org/W1982391209, https://openalex.org/W4239768013, https://openalex.org/W7028365173, https://openalex.org/W2520875137, https://openalex.org/W2103245470, https://openalex.org/W4299689471, https://openalex.org/W2035866446, https://openalex.org/W2809782243, https://openalex.org/W4253234880, https://openalex.org/W4301861531, https://openalex.org/W3013067193 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 5, 48, 74 |
| abstract_inverted_index.t | 76 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.be | 42 |
| abstract_inverted_index.by | 100 |
| abstract_inverted_index.in | 21, 34, 56, 65, 94 |
| abstract_inverted_index.is | 4, 14, 98 |
| abstract_inverted_index.it | 13 |
| abstract_inverted_index.of | 63, 103, 107 |
| abstract_inverted_index.pp | 114 |
| abstract_inverted_index.to | 16, 23, 30, 47, 59, 78 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.Due | 29 |
| abstract_inverted_index.The | 0, 82 |
| abstract_inverted_index.and | 85 |
| abstract_inverted_index.are | 53 |
| abstract_inverted_index.fit | 24 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.the | 18, 25, 31, 35, 57, 61, 66, 80, 92, 95, 101 |
| abstract_inverted_index.Vol. | 110 |
| abstract_inverted_index.data | 87 |
| abstract_inverted_index.lead | 46 |
| abstract_inverted_index.real | 86 |
| abstract_inverted_index.show | 90 |
| abstract_inverted_index.test | 77 |
| abstract_inverted_index.that | 91 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.2023, | 113 |
| abstract_inverted_index.31-37 | 115 |
| abstract_inverted_index.There | 52 |
| abstract_inverted_index.apply | 73 |
| abstract_inverted_index.check | 60 |
| abstract_inverted_index.count | 10 |
| abstract_inverted_index.data. | 11 |
| abstract_inverted_index.might | 41 |
| abstract_inverted_index.model | 3, 97 |
| abstract_inverted_index.order | 22 |
| abstract_inverted_index.study | 84 |
| abstract_inverted_index.tests | 55 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.23(2), | 111 |
| abstract_inverted_index.caused | 99 |
| abstract_inverted_index.errors | 40 |
| abstract_inverted_index.highly | 49 |
| abstract_inverted_index.model, | 38 |
| abstract_inverted_index.model. | 28, 68 |
| abstract_inverted_index.study, | 71 |
| abstract_inverted_index.Journal | 106 |
| abstract_inverted_index.Poisson | 1, 26, 36, 67, 96 |
| abstract_inverted_index.clearly | 89 |
| abstract_inverted_index.example | 88 |
| abstract_inverted_index.problem | 33 |
| abstract_inverted_index.satisfy | 17 |
| abstract_inverted_index.several | 54 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.identify | 79 |
| abstract_inverted_index.presence | 62 |
| abstract_inverted_index.standard | 39 |
| abstract_inverted_index.November, | 112 |
| abstract_inverted_index.Sciences, | 109 |
| abstract_inverted_index.existence | 102 |
| abstract_inverted_index.modelling | 9 |
| abstract_inverted_index.necessary | 15 |
| abstract_inverted_index.outliers. | 104 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.assumption | 20 |
| abstract_inverted_index.inference. | 51 |
| abstract_inverted_index.literature | 58 |
| abstract_inverted_index.misleading | 50 |
| abstract_inverted_index.regression | 2, 27, 37 |
| abstract_inverted_index.simulation | 83 |
| abstract_inverted_index.well-known | 6 |
| abstract_inverted_index.Statistical | 108 |
| abstract_inverted_index.International | 105 |
| abstract_inverted_index.overdispersion | 19, 32, 64, 93 |
| abstract_inverted_index.overdispersion. | 81 |
| abstract_inverted_index.underestimated, | 43 |
| abstract_inverted_index.regression-based | 75 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.76321909 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |