Outlook for artificial intelligence and machine learning at the NSLS-II Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/abbd4e
We describe the current and future plans for using artificial intelligence and machine learning (AI/ML) methods at the National Synchrotron Light Source II (NSLS-II), a scientific user facility at the Brookhaven National Laboratory. We discuss the opportunity for using the AI/ML tools and techniques developed in the data and computational science areas to greatly improve the scientific output of large scale experimental user facilities. We describe our current and future plans in areas including from detecting and recovering from faults, optimizing the source and instrument configurations, streamlining the pipeline from measurement to insight, through data acquisition, processing, analysis. The overall strategy and direction of the NSLS-II facility in relation to AI/ML is presented.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/abbd4e
- OA Status
- gold
- Cited By
- 27
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3090494780
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3090494780Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/abbd4eDigital Object Identifier
- Title
-
Outlook for artificial intelligence and machine learning at the NSLS-IIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-01Full publication date if available
- Authors
-
Stuart I. Campbell, Daniel Allan, Andi Barbour, Daniel Olds, Maksim Rakitin, Reid Smith, S. B. WilkinsList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/abbd4ePublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/2632-2153/abbd4eDirect OA link when available
- Concepts
-
National laboratory, Pipeline (software), Computer science, Relation (database), Artificial intelligence, Systems engineering, Engineering, Operating system, Engineering physics, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
27Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 5, 2023: 12, 2022: 6, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3090494780 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/abbd4e |
| ids.doi | https://doi.org/10.1088/2632-2153/abbd4e |
| ids.mag | 3090494780 |
| ids.openalex | https://openalex.org/W3090494780 |
| fwci | 1.89567898 |
| type | article |
| title | Outlook for artificial intelligence and machine learning at the NSLS-II |
| awards[0].id | https://openalex.org/G2420687898 |
| awards[0].funder_id | https://openalex.org/F4320337480 |
| awards[0].display_name | |
| awards[0].funder_award_id | DE-SC0012704 |
| awards[0].funder_display_name | Basic Energy Sciences |
| biblio.issue | 1 |
| biblio.volume | 2 |
| biblio.last_page | 013001 |
| biblio.first_page | 013001 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T11986 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9958999752998352 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1802 |
| topics[1].subfield.display_name | Information Systems and Management |
| topics[1].display_name | Scientific Computing and Data Management |
| topics[2].id | https://openalex.org/T10857 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9814000129699707 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1315 |
| topics[2].subfield.display_name | Structural Biology |
| topics[2].display_name | Advanced Electron Microscopy Techniques and Applications |
| funders[0].id | https://openalex.org/F4320337480 |
| funders[0].ror | https://ror.org/05mg91w61 |
| funders[0].display_name | Basic Energy Sciences |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| concepts[0].id | https://openalex.org/C2991948145 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8003316521644592 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16801175 |
| concepts[0].display_name | National laboratory |
| concepts[1].id | https://openalex.org/C43521106 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7016119956970215 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[1].display_name | Pipeline (software) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5539836883544922 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C25343380 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4238492250442505 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[3].display_name | Relation (database) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.395577609539032 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C201995342 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3693970739841461 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[5].display_name | Systems engineering |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.20448720455169678 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.13975372910499573 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| concepts[8].id | https://openalex.org/C61696701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.122408926486969 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q770766 |
| concepts[8].display_name | Engineering physics |
| concepts[9].id | https://openalex.org/C77088390 |
| concepts[9].level | 1 |
| concepts[9].score | 0.10765910148620605 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[9].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/national-laboratory |
| keywords[0].score | 0.8003316521644592 |
| keywords[0].display_name | National laboratory |
| keywords[1].id | https://openalex.org/keywords/pipeline |
| keywords[1].score | 0.7016119956970215 |
| keywords[1].display_name | Pipeline (software) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5539836883544922 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/relation |
| keywords[3].score | 0.4238492250442505 |
| keywords[3].display_name | Relation (database) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.395577609539032 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/systems-engineering |
| keywords[5].score | 0.3693970739841461 |
| keywords[5].display_name | Systems engineering |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.20448720455169678 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/operating-system |
| keywords[7].score | 0.13975372910499573 |
| keywords[7].display_name | Operating system |
| keywords[8].id | https://openalex.org/keywords/engineering-physics |
| keywords[8].score | 0.122408926486969 |
| keywords[8].display_name | Engineering physics |
| keywords[9].id | https://openalex.org/keywords/database |
| keywords[9].score | 0.10765910148620605 |
| keywords[9].display_name | Database |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/abbd4e |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/abbd4e |
| locations[1].id | pmh:oai:osti.gov:1677662 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1677662 |
| locations[2].id | pmh:oai:osti.gov:1835323 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/1835323 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5007255618 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7079-0878 |
| authorships[0].author.display_name | Stuart I. Campbell |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[0].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I200870766 |
| authorships[0].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stuart I Campbell |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[1].author.id | https://openalex.org/A5090203468 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5947-6017 |
| authorships[1].author.display_name | Daniel Allan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[1].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I200870766 |
| authorships[1].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel B Allan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[2].author.id | https://openalex.org/A5058232594 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2631-7500 |
| authorships[2].author.display_name | Andi Barbour |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[2].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[2].institutions[0].id | https://openalex.org/I200870766 |
| authorships[2].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andi M Barbour |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[3].author.id | https://openalex.org/A5075015217 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4611-4113 |
| authorships[3].author.display_name | Daniel Olds |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[3].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I200870766 |
| authorships[3].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel Olds |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[4].author.id | https://openalex.org/A5031339122 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3685-852X |
| authorships[4].author.display_name | Maksim Rakitin |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[4].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[4].institutions[0].id | https://openalex.org/I200870766 |
| authorships[4].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Maksim S Rakitin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[5].author.id | https://openalex.org/A5020587472 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2538-8924 |
| authorships[5].author.display_name | Reid Smith |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[5].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[5].institutions[0].id | https://openalex.org/I200870766 |
| authorships[5].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Reid Smith |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[6].author.id | https://openalex.org/A5079164409 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1191-3350 |
| authorships[6].author.display_name | S. B. Wilkins |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I200870766 |
| authorships[6].affiliations[0].raw_affiliation_string | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| authorships[6].institutions[0].id | https://openalex.org/I200870766 |
| authorships[6].institutions[0].ror | https://ror.org/02ex6cf31 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I200870766, https://openalex.org/I39565521, https://openalex.org/I4210142672 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Brookhaven National Laboratory |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Stuart B Wilkins |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/2632-2153/abbd4e |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Outlook for artificial intelligence and machine learning at the NSLS-II |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W4386053707, https://openalex.org/W2341184295, https://openalex.org/W306539506, https://openalex.org/W14298219, https://openalex.org/W4234073326, https://openalex.org/W2129585587, https://openalex.org/W1972804960, https://openalex.org/W2998628374, https://openalex.org/W228870880, https://openalex.org/W1510732775 |
| cited_by_count | 27 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1088/2632-2153/abbd4e |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/abbd4e |
| primary_location.id | doi:10.1088/2632-2153/abbd4e |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/abbd4e |
| publication_date | 2020-10-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2946643424, https://openalex.org/W2896199055, https://openalex.org/W2529948471, https://openalex.org/W2980861991, https://openalex.org/W3081470228, https://openalex.org/W1995412658, https://openalex.org/W2564506342, https://openalex.org/W2980448402, https://openalex.org/W2749112322, https://openalex.org/W2766447205, https://openalex.org/W2015703483, https://openalex.org/W1999472755, https://openalex.org/W2336731538, https://openalex.org/W2422180740, https://openalex.org/W2611387986, https://openalex.org/W2790756470, https://openalex.org/W2898561831, https://openalex.org/W2998840182, https://openalex.org/W6773881370, https://openalex.org/W2060887196, https://openalex.org/W1974709312, https://openalex.org/W2321880233, https://openalex.org/W2529121510, https://openalex.org/W1992985800, https://openalex.org/W6780260064, https://openalex.org/W6770173244, https://openalex.org/W2770104041, https://openalex.org/W2892176395, https://openalex.org/W2736601468, https://openalex.org/W3105982350, https://openalex.org/W3012113614, https://openalex.org/W2990151466, https://openalex.org/W2911805374, https://openalex.org/W2949608212, https://openalex.org/W4291142799, https://openalex.org/W3208058805, https://openalex.org/W1757796397, https://openalex.org/W3037992726, https://openalex.org/W2972093249, https://openalex.org/W3104200757, https://openalex.org/W3006236527 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 25 |
| abstract_inverted_index.II | 23 |
| abstract_inverted_index.We | 1, 34, 65 |
| abstract_inverted_index.at | 17, 29 |
| abstract_inverted_index.in | 46, 72, 108 |
| abstract_inverted_index.is | 112 |
| abstract_inverted_index.of | 59, 104 |
| abstract_inverted_index.to | 53, 92, 110 |
| abstract_inverted_index.The | 99 |
| abstract_inverted_index.and | 5, 12, 43, 49, 69, 77, 84, 102 |
| abstract_inverted_index.for | 8, 38 |
| abstract_inverted_index.our | 67 |
| abstract_inverted_index.the | 3, 18, 30, 36, 40, 47, 56, 82, 88, 105 |
| abstract_inverted_index.data | 48, 95 |
| abstract_inverted_index.from | 75, 79, 90 |
| abstract_inverted_index.user | 27, 63 |
| abstract_inverted_index.AI/ML | 41, 111 |
| abstract_inverted_index.Light | 21 |
| abstract_inverted_index.areas | 52, 73 |
| abstract_inverted_index.large | 60 |
| abstract_inverted_index.plans | 7, 71 |
| abstract_inverted_index.scale | 61 |
| abstract_inverted_index.tools | 42 |
| abstract_inverted_index.using | 9, 39 |
| abstract_inverted_index.Source | 22 |
| abstract_inverted_index.future | 6, 70 |
| abstract_inverted_index.output | 58 |
| abstract_inverted_index.source | 83 |
| abstract_inverted_index.(AI/ML) | 15 |
| abstract_inverted_index.NSLS-II | 106 |
| abstract_inverted_index.current | 4, 68 |
| abstract_inverted_index.discuss | 35 |
| abstract_inverted_index.faults, | 80 |
| abstract_inverted_index.greatly | 54 |
| abstract_inverted_index.improve | 55 |
| abstract_inverted_index.machine | 13 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.overall | 100 |
| abstract_inverted_index.science | 51 |
| abstract_inverted_index.through | 94 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.National | 19, 32 |
| abstract_inverted_index.describe | 2, 66 |
| abstract_inverted_index.facility | 28, 107 |
| abstract_inverted_index.insight, | 93 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.pipeline | 89 |
| abstract_inverted_index.relation | 109 |
| abstract_inverted_index.strategy | 101 |
| abstract_inverted_index.analysis. | 98 |
| abstract_inverted_index.detecting | 76 |
| abstract_inverted_index.developed | 45 |
| abstract_inverted_index.direction | 103 |
| abstract_inverted_index.including | 74 |
| abstract_inverted_index.(NSLS-II), | 24 |
| abstract_inverted_index.Brookhaven | 31 |
| abstract_inverted_index.artificial | 10 |
| abstract_inverted_index.instrument | 85 |
| abstract_inverted_index.optimizing | 81 |
| abstract_inverted_index.presented. | 113 |
| abstract_inverted_index.recovering | 78 |
| abstract_inverted_index.scientific | 26, 57 |
| abstract_inverted_index.techniques | 44 |
| abstract_inverted_index.Laboratory. | 33 |
| abstract_inverted_index.Synchrotron | 20 |
| abstract_inverted_index.facilities. | 64 |
| abstract_inverted_index.measurement | 91 |
| abstract_inverted_index.opportunity | 37 |
| abstract_inverted_index.processing, | 97 |
| abstract_inverted_index.acquisition, | 96 |
| abstract_inverted_index.experimental | 62 |
| abstract_inverted_index.intelligence | 11 |
| abstract_inverted_index.streamlining | 87 |
| abstract_inverted_index.computational | 50 |
| abstract_inverted_index.configurations, | 86 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5007255618 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I200870766 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.85015868 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |