Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification Performance Article Swipe
Ting Wang
,
Sheng-Uei Guan
,
Ka Lok Man
,
Jong Hyuk Park
,
Hui-Huang Hsu
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.3390/sym7010053
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.3390/sym7010053
Machine learning is a very important approach to pattern classification. This paper provides a better insight into Incremental Attribute Learning (IAL) with further analysis as to why it can exhibit better performance than conventional batch training. IAL is a novel supervised machine learning strategy, which gradually trains features in one or more chunks. Previous research showed that IAL can obtain lower classification error rates than a conventional batch training approach. Yet the reason for that is still not very clear. In this study, the feasibility of IAL is verified by mathematical approaches. Moreover, experimental results derived by IAL neural networks on benchmarks also confirm the mathematical validation.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/sym7010053
- https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169
- OA Status
- gold
- Cited By
- 1
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2079997970
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2079997970Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/sym7010053Digital Object Identifier
- Title
-
Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification PerformanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-14Full publication date if available
- Authors
-
Ting Wang, Sheng-Uei Guan, Ka Lok Man, Jong Hyuk Park, Hui-Huang HsuList of authors in order
- Landing page
-
https://doi.org/10.3390/sym7010053Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169Direct OA link when available
- Concepts
-
Computer science, Artificial neural network, Artificial intelligence, Machine learning, Train, Cartography, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2016: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2079997970 |
|---|---|
| doi | https://doi.org/10.3390/sym7010053 |
| ids.doi | https://doi.org/10.3390/sym7010053 |
| ids.mag | 2079997970 |
| ids.openalex | https://openalex.org/W2079997970 |
| fwci | 0.31430091 |
| type | article |
| title | Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification Performance |
| awards[0].id | https://openalex.org/G8685938209 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61070085 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 7 |
| biblio.last_page | 66 |
| biblio.first_page | 53 |
| topics[0].id | https://openalex.org/T10820 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9934999942779541 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Fuzzy Logic and Control Systems |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| topics[2].id | https://openalex.org/T11652 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Imbalanced Data Classification Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8278065323829651 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6913050413131714 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6474297046661377 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6019402742385864 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C190839683 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4187445044517517 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2448197 |
| concepts[4].display_name | Train |
| concepts[5].id | https://openalex.org/C58640448 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[5].display_name | Cartography |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8278065323829651 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6913050413131714 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6474297046661377 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6019402742385864 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/train |
| keywords[4].score | 0.4187445044517517 |
| keywords[4].display_name | Train |
| language | en |
| locations[0].id | doi:10.3390/sym7010053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190787756 |
| locations[0].source.issn | 2073-8994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-8994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Symmetry |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Symmetry |
| locations[0].landing_page_url | https://doi.org/10.3390/sym7010053 |
| locations[1].id | pmh:oai:doaj.org/article:41e8185dc49f4b139193ec292b3503a3 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Symmetry, Vol 7, Iss 1, Pp 53-66 (2015) |
| locations[1].landing_page_url | https://doaj.org/article/41e8185dc49f4b139193ec292b3503a3 |
| locations[2].id | pmh:oai:mdpi.com:/2073-8994/7/1/53/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Symmetry |
| locations[2].landing_page_url | http://dx.doi.org/10.3390/sym7010053 |
| locations[3].id | pmh:oai:tkuir.lib.tku.edu.tw:987654321/103197 |
| locations[3].is_oa | False |
| locations[3].source | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/103197 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100427914 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9357-4238 |
| authorships[0].author.display_name | Ting Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China |
| authorships[0].affiliations[1].raw_affiliation_string | Research Center of Web Information and Social Management, Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ting Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Research Center of Web Information and Social Management, Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, China, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China |
| authorships[1].author.id | https://openalex.org/A5065827089 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3968-9752 |
| authorships[1].author.display_name | Sheng-Uei Guan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science & Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China |
| authorships[1].institutions[0].id | https://openalex.org/I69356397 |
| authorships[1].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sheng-Uei Guan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science & Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China |
| authorships[2].author.id | https://openalex.org/A5075116069 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5787-4716 |
| authorships[2].author.display_name | Ka Lok Man |
| authorships[2].countries | CN, KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, Yonsei University, Seoul 120-749, Korea |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I69356397 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Computer Science & Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China |
| authorships[2].institutions[0].id | https://openalex.org/I69356397 |
| authorships[2].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[2].institutions[1].id | https://openalex.org/I193775966 |
| authorships[2].institutions[1].ror | https://ror.org/01wjejq96 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I193775966 |
| authorships[2].institutions[1].country_code | KR |
| authorships[2].institutions[1].display_name | Yonsei University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ka Man |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science & Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China, Department of Computer Science, Yonsei University, Seoul 120-749, Korea |
| authorships[3].author.id | https://openalex.org/A5103285073 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1831-0309 |
| authorships[3].author.display_name | Jong Hyuk Park |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I118373667 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 139-743, Korea |
| authorships[3].institutions[0].id | https://openalex.org/I118373667 |
| authorships[3].institutions[0].ror | https://ror.org/00chfja07 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I118373667 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Seoul National University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jong Park |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 139-743, Korea |
| authorships[4].author.id | https://openalex.org/A5111991335 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hui-Huang Hsu |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I107470533 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Tamkang University, Taipei 25137, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I107470533 |
| authorships[4].institutions[0].ror | https://ror.org/04tft4718 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I107470533 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | Tamkang University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hui-Huang Hsu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Information Engineering, Tamkang University, Taipei 25137, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2016-06-24T00:00:00 |
| display_name | Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification Performance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10820 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9934999942779541 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Fuzzy Logic and Control Systems |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2016 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/sym7010053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190787756 |
| best_oa_location.source.issn | 2073-8994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-8994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Symmetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Symmetry |
| best_oa_location.landing_page_url | https://doi.org/10.3390/sym7010053 |
| primary_location.id | doi:10.3390/sym7010053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190787756 |
| primary_location.source.issn | 2073-8994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-8994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Symmetry |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-8994/7/1/53/pdf?version=1421233169 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Symmetry |
| primary_location.landing_page_url | https://doi.org/10.3390/sym7010053 |
| publication_date | 2015-01-14 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W6606725601, https://openalex.org/W1983529751, https://openalex.org/W2002697805, https://openalex.org/W2034787567, https://openalex.org/W2176043375, https://openalex.org/W2148511931, https://openalex.org/W4240837725, https://openalex.org/W1507480455, https://openalex.org/W6652737604, https://openalex.org/W1603997747, https://openalex.org/W2010734908, https://openalex.org/W2142885311, https://openalex.org/W200799616, https://openalex.org/W1505904147, https://openalex.org/W2333622867, https://openalex.org/W35354330, https://openalex.org/W2142372861, https://openalex.org/W2172262691, https://openalex.org/W6796718058, https://openalex.org/W2056984371, https://openalex.org/W2009603406, https://openalex.org/W2074929544, https://openalex.org/W3021229869, https://openalex.org/W3173214590, https://openalex.org/W4250893704, https://openalex.org/W2059563365, https://openalex.org/W163254787 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 3, 13, 38, 65 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.by | 89, 96 |
| abstract_inverted_index.in | 48 |
| abstract_inverted_index.is | 2, 37, 75, 87 |
| abstract_inverted_index.it | 27 |
| abstract_inverted_index.of | 85 |
| abstract_inverted_index.on | 100 |
| abstract_inverted_index.or | 50 |
| abstract_inverted_index.to | 7, 25 |
| abstract_inverted_index.IAL | 36, 57, 86, 97 |
| abstract_inverted_index.Yet | 70 |
| abstract_inverted_index.can | 28, 58 |
| abstract_inverted_index.for | 73 |
| abstract_inverted_index.not | 77 |
| abstract_inverted_index.one | 49 |
| abstract_inverted_index.the | 71, 83, 104 |
| abstract_inverted_index.why | 26 |
| abstract_inverted_index.This | 10 |
| abstract_inverted_index.also | 102 |
| abstract_inverted_index.into | 16 |
| abstract_inverted_index.more | 51 |
| abstract_inverted_index.than | 32, 64 |
| abstract_inverted_index.that | 56, 74 |
| abstract_inverted_index.this | 81 |
| abstract_inverted_index.very | 4, 78 |
| abstract_inverted_index.with | 21 |
| abstract_inverted_index.(IAL) | 20 |
| abstract_inverted_index.batch | 34, 67 |
| abstract_inverted_index.error | 62 |
| abstract_inverted_index.lower | 60 |
| abstract_inverted_index.novel | 39 |
| abstract_inverted_index.paper | 11 |
| abstract_inverted_index.rates | 63 |
| abstract_inverted_index.still | 76 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.better | 14, 30 |
| abstract_inverted_index.clear. | 79 |
| abstract_inverted_index.neural | 98 |
| abstract_inverted_index.obtain | 59 |
| abstract_inverted_index.reason | 72 |
| abstract_inverted_index.showed | 55 |
| abstract_inverted_index.study, | 82 |
| abstract_inverted_index.trains | 46 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.chunks. | 52 |
| abstract_inverted_index.confirm | 103 |
| abstract_inverted_index.derived | 95 |
| abstract_inverted_index.exhibit | 29 |
| abstract_inverted_index.further | 22 |
| abstract_inverted_index.insight | 15 |
| abstract_inverted_index.machine | 41 |
| abstract_inverted_index.pattern | 8 |
| abstract_inverted_index.results | 94 |
| abstract_inverted_index.Learning | 19 |
| abstract_inverted_index.Previous | 53 |
| abstract_inverted_index.analysis | 23 |
| abstract_inverted_index.approach | 6 |
| abstract_inverted_index.features | 47 |
| abstract_inverted_index.learning | 1, 42 |
| abstract_inverted_index.networks | 99 |
| abstract_inverted_index.provides | 12 |
| abstract_inverted_index.research | 54 |
| abstract_inverted_index.training | 68 |
| abstract_inverted_index.verified | 88 |
| abstract_inverted_index.Attribute | 18 |
| abstract_inverted_index.Moreover, | 92 |
| abstract_inverted_index.approach. | 69 |
| abstract_inverted_index.gradually | 45 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.strategy, | 43 |
| abstract_inverted_index.training. | 35 |
| abstract_inverted_index.benchmarks | 101 |
| abstract_inverted_index.supervised | 40 |
| abstract_inverted_index.Incremental | 17 |
| abstract_inverted_index.approaches. | 91 |
| abstract_inverted_index.feasibility | 84 |
| abstract_inverted_index.performance | 31 |
| abstract_inverted_index.validation. | 106 |
| abstract_inverted_index.conventional | 33, 66 |
| abstract_inverted_index.experimental | 93 |
| abstract_inverted_index.mathematical | 90, 105 |
| abstract_inverted_index.classification | 61 |
| abstract_inverted_index.classification. | 9 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5111991335 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I107470533 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.79587153 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |