Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1111/1477-9552.12523
Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under‐determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/1477-9552.12523
- OA Status
- hybrid
- Cited By
- 3
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313576652
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313576652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/1477-9552.12523Digital Object Identifier
- Title
-
Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation frameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-04Full publication date if available
- Authors
-
Jing Yi, S Cohen, Sarah Rehkamp, Patrick Canning, Miguel I. Gómez, Houtian GeList of authors in order
- Landing page
-
https://doi.org/10.1111/1477-9552.12523Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1111/1477-9552.12523Direct OA link when available
- Concepts
-
Imputation (statistics), Computer science, Monte Carlo method, Data mining, Econometrics, Spatial analysis, Flexibility (engineering), Statistics, Missing data, Mathematics, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313576652 |
|---|---|
| doi | https://doi.org/10.1111/1477-9552.12523 |
| ids.doi | https://doi.org/10.1111/1477-9552.12523 |
| ids.openalex | https://openalex.org/W4313576652 |
| fwci | 1.84546401 |
| type | article |
| title | Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework |
| biblio.issue | 3 |
| biblio.volume | 74 |
| biblio.last_page | 701 |
| biblio.first_page | 686 |
| topics[0].id | https://openalex.org/T10841 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Economic and Environmental Valuation |
| topics[1].id | https://openalex.org/T11898 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9855999946594238 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Economics of Agriculture and Food Markets |
| topics[2].id | https://openalex.org/T10969 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9731000065803528 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Water resources management and optimization |
| funders[0].id | https://openalex.org/F4320309624 |
| funders[0].ror | https://ror.org/05bnh6r87 |
| funders[0].display_name | Cornell University |
| funders[1].id | https://openalex.org/F4320321985 |
| funders[1].ror | https://ror.org/030c92375 |
| funders[1].display_name | Department of Agriculture, Australian Government |
| funders[2].id | https://openalex.org/F4320332786 |
| funders[2].ror | https://ror.org/05ycxzd89 |
| funders[2].display_name | Economic Research Service |
| is_xpac | False |
| apc_list.value | 3760 |
| apc_list.currency | USD |
| apc_list.value_usd | 3760 |
| apc_paid.value | 3760 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3760 |
| concepts[0].id | https://openalex.org/C58041806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7614582777023315 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[0].display_name | Imputation (statistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.657507061958313 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C19499675 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5384383797645569 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[2].display_name | Monte Carlo method |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5074769854545593 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4897880554199219 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C159620131 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4330942928791046 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[5].display_name | Spatial analysis |
| concepts[6].id | https://openalex.org/C2780598303 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42244648933410645 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q65921492 |
| concepts[6].display_name | Flexibility (engineering) |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38634440302848816 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C9357733 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3844110369682312 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[8].display_name | Missing data |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17921876907348633 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13417783379554749 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/imputation |
| keywords[0].score | 0.7614582777023315 |
| keywords[0].display_name | Imputation (statistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.657507061958313 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[2].score | 0.5384383797645569 |
| keywords[2].display_name | Monte Carlo method |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5074769854545593 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.4897880554199219 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/spatial-analysis |
| keywords[5].score | 0.4330942928791046 |
| keywords[5].display_name | Spatial analysis |
| keywords[6].id | https://openalex.org/keywords/flexibility |
| keywords[6].score | 0.42244648933410645 |
| keywords[6].display_name | Flexibility (engineering) |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.38634440302848816 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/missing-data |
| keywords[8].score | 0.3844110369682312 |
| keywords[8].display_name | Missing data |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.17921876907348633 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.13417783379554749 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1111/1477-9552.12523 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S14468722 |
| locations[0].source.issn | 0021-857X, 1477-9552 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0021-857X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Agricultural Economics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Agricultural Economics |
| locations[0].landing_page_url | https://doi.org/10.1111/1477-9552.12523 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052674563 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1076-3119 |
| authorships[0].author.display_name | Jing Yi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[0].affiliations[0].raw_affiliation_string | Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA |
| authorships[0].institutions[0].id | https://openalex.org/I205783295 |
| authorships[0].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cornell University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jing Yi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA |
| authorships[1].author.id | https://openalex.org/A5104727447 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | S Cohen |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1335884394 |
| authorships[1].affiliations[0].raw_affiliation_string | USDA Economic Research Service, Washington, DC, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1335884394 |
| authorships[1].institutions[0].ror | https://ror.org/05ycxzd89 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1335884394, https://openalex.org/I1336096307 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Economic Research Service |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Samantha Cohen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | USDA Economic Research Service, Washington, DC, USA |
| authorships[2].author.id | https://openalex.org/A5053083820 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8817-2514 |
| authorships[2].author.display_name | Sarah Rehkamp |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1335884394 |
| authorships[2].affiliations[0].raw_affiliation_string | USDA Economic Research Service, Washington, DC, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1335884394 |
| authorships[2].institutions[0].ror | https://ror.org/05ycxzd89 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1335884394, https://openalex.org/I1336096307 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Economic Research Service |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sarah Rehkamp |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | USDA Economic Research Service, Washington, DC, USA |
| authorships[3].author.id | https://openalex.org/A5111434169 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Patrick Canning |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1335884394 |
| authorships[3].affiliations[0].raw_affiliation_string | USDA Economic Research Service, Washington, DC, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1335884394 |
| authorships[3].institutions[0].ror | https://ror.org/05ycxzd89 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1335884394, https://openalex.org/I1336096307 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Economic Research Service |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Patrick Canning |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | USDA Economic Research Service, Washington, DC, USA |
| authorships[4].author.id | https://openalex.org/A5016997673 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3591-5249 |
| authorships[4].author.display_name | Miguel I. Gómez |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[4].affiliations[0].raw_affiliation_string | Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA |
| authorships[4].institutions[0].id | https://openalex.org/I205783295 |
| authorships[4].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Cornell University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Miguel I. Gómez |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA |
| authorships[5].author.id | https://openalex.org/A5032419900 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1916-9389 |
| authorships[5].author.display_name | Houtian Ge |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[5].affiliations[0].raw_affiliation_string | Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA |
| authorships[5].institutions[0].id | https://openalex.org/I205783295 |
| authorships[5].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Cornell University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Houtian Ge |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1111/1477-9552.12523 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Overcoming data barriers in spatial agri‐food systems analysis: A flexible imputation framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10841 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Economic and Environmental Valuation |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549, https://openalex.org/W3123177881 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1111/1477-9552.12523 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S14468722 |
| best_oa_location.source.issn | 0021-857X, 1477-9552 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0021-857X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Agricultural Economics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Agricultural Economics |
| best_oa_location.landing_page_url | https://doi.org/10.1111/1477-9552.12523 |
| primary_location.id | doi:10.1111/1477-9552.12523 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S14468722 |
| primary_location.source.issn | 0021-857X, 1477-9552 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0021-857X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Agricultural Economics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Agricultural Economics |
| primary_location.landing_page_url | https://doi.org/10.1111/1477-9552.12523 |
| publication_date | 2023-01-04 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2110125735, https://openalex.org/W2954095111, https://openalex.org/W2281522813, https://openalex.org/W2329799209, https://openalex.org/W2768117128, https://openalex.org/W1980620608, https://openalex.org/W3132982068, https://openalex.org/W4241914475, https://openalex.org/W2127695568, https://openalex.org/W1486862277, https://openalex.org/W2065992259, https://openalex.org/W2326976677, https://openalex.org/W2483929027, https://openalex.org/W1965017535, https://openalex.org/W2125291718, https://openalex.org/W2119630556, https://openalex.org/W2921479879, https://openalex.org/W2815308567, https://openalex.org/W2053321284, https://openalex.org/W2977558612, https://openalex.org/W1541350805, https://openalex.org/W2007391476, https://openalex.org/W2160455229, https://openalex.org/W1838764073, https://openalex.org/W2790975750, https://openalex.org/W2048804107, https://openalex.org/W1546184848, https://openalex.org/W2502317260, https://openalex.org/W1814500939, https://openalex.org/W3097542903, https://openalex.org/W2126257586, https://openalex.org/W2040682989, https://openalex.org/W2095304671, https://openalex.org/W2800570821, https://openalex.org/W4242387957 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 32 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.To | 104 |
| abstract_inverted_index.US | 64 |
| abstract_inverted_index.We | 28, 68 |
| abstract_inverted_index.in | 2, 40, 128 |
| abstract_inverted_index.is | 21 |
| abstract_inverted_index.of | 9, 43, 66, 77, 84, 96, 108 |
| abstract_inverted_index.to | 23, 56, 73, 99, 124 |
| abstract_inverted_index.we | 111 |
| abstract_inverted_index.The | 47 |
| abstract_inverted_index.aid | 39 |
| abstract_inverted_index.and | 12, 30, 52, 94, 121 |
| abstract_inverted_index.are | 133 |
| abstract_inverted_index.can | 38 |
| abstract_inverted_index.our | 109 |
| abstract_inverted_index.the | 7, 41, 62, 75, 92, 106, 113, 126 |
| abstract_inverted_index.use | 49, 70 |
| abstract_inverted_index.2017 | 63 |
| abstract_inverted_index.BIC, | 89 |
| abstract_inverted_index.bias | 127 |
| abstract_inverted_index.data | 4, 11, 19, 34, 45, 59, 120, 123 |
| abstract_inverted_index.deal | 24 |
| abstract_inverted_index.from | 61, 79, 136 |
| abstract_inverted_index.show | 91, 125 |
| abstract_inverted_index.that | 37 |
| abstract_inverted_index.then | 69 |
| abstract_inverted_index.this | 17, 97 |
| abstract_inverted_index.when | 131 |
| abstract_inverted_index.with | 25, 118 |
| abstract_inverted_index.Carlo | 51 |
| abstract_inverted_index.MAPE, | 88 |
| abstract_inverted_index.Monte | 50 |
| abstract_inverted_index.data. | 103 |
| abstract_inverted_index.etc.) | 90 |
| abstract_inverted_index.limit | 6 |
| abstract_inverted_index.value | 107 |
| abstract_inverted_index.water | 115 |
| abstract_inverted_index.(i.e., | 87 |
| abstract_inverted_index.Census | 65 |
| abstract_inverted_index.hinder | 13 |
| abstract_inverted_index.method | 36 |
| abstract_inverted_index.models | 72 |
| abstract_inverted_index.public | 3 |
| abstract_inverted_index.simply | 134 |
| abstract_inverted_index.tables | 60 |
| abstract_inverted_index.Various | 82 |
| abstract_inverted_index.compare | 112 |
| abstract_inverted_index.dropped | 135 |
| abstract_inverted_index.imputed | 119 |
| abstract_inverted_index.method, | 110 |
| abstract_inverted_index.metrics | 83 |
| abstract_inverted_index.models. | 81 |
| abstract_inverted_index.present | 29 |
| abstract_inverted_index.recover | 57, 101 |
| abstract_inverted_index.spatial | 10 |
| abstract_inverted_index.values. | 27 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 76, 86 |
| abstract_inverted_index.approach | 98 |
| abstract_inverted_index.capacity | 95 |
| abstract_inverted_index.context, | 18 |
| abstract_inverted_index.evaluate | 74 |
| abstract_inverted_index.flexible | 33 |
| abstract_inverted_index.forecast | 85 |
| abstract_inverted_index.research | 14, 129 |
| abstract_inverted_index.severely | 5 |
| abstract_inverted_index.systems. | 46 |
| abstract_inverted_index.validate | 31 |
| abstract_inverted_index.analysis. | 137 |
| abstract_inverted_index.livestock | 114 |
| abstract_inverted_index.modelling | 54 |
| abstract_inverted_index.necessary | 22 |
| abstract_inverted_index.accurately | 100 |
| abstract_inverted_index.completion | 42 |
| abstract_inverted_index.illustrate | 105 |
| abstract_inverted_index.imputation | 20, 35 |
| abstract_inverted_index.suppressed | 26, 58, 102, 122 |
| abstract_inverted_index.techniques | 55 |
| abstract_inverted_index.usefulness | 8 |
| abstract_inverted_index.withdrawal | 116 |
| abstract_inverted_index.alternative | 80 |
| abstract_inverted_index.econometric | 71 |
| abstract_inverted_index.estimations | 117 |
| abstract_inverted_index.flexibility | 93 |
| abstract_inverted_index.imputations | 78 |
| abstract_inverted_index.validations | 48 |
| abstract_inverted_index.Agriculture. | 67 |
| abstract_inverted_index.Suppressions | 1 |
| abstract_inverted_index.applications | 130 |
| abstract_inverted_index.optimisation | 53 |
| abstract_inverted_index.suppressions | 132 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.under‐determined | 44 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5052674563 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I205783295 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.87319832 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |