Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.05151
Discrete diffusion models represent a significant advance in generative modeling, demonstrating remarkable success in synthesizing complex, high-quality discrete data. However, to avoid exponential computational costs, they typically rely on calculating per-dimension transition probabilities when learning high-dimensional distributions. In this study, we rigorously prove that this approach leads to a worst-case linear scaling of Kullback-Leibler (KL) divergence with data dimension. To address this, we propose a Quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM), which enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces, offering a theoretical pathway to faithfully capture the true joint distribution. By deriving posterior states through quantum Bayes' theorem, similar to the crucial role of posterior probabilities in classical diffusion models, and by learning the joint probability, we establish a solid theoretical foundation for quantum-enhanced diffusion models. For denoising, we design a quantum circuit that utilizes temporal information for parameter sharing and incorporates learnable classical-data-controlled rotations for encoding. Exploiting joint distribution learning, our approach enables single-step sampling from pure noise, eliminating iterative requirements of existing models. Simulations demonstrate the proposed model's superior accuracy in modeling complex distributions compared to factorization methods. Hence, this paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.05151
- https://arxiv.org/pdf/2505.05151
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416098311
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416098311Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.05151Digital Object Identifier
- Title
-
Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-08Full publication date if available
- Authors
-
Chuangtao Chen, Qinglin Zhao, MengChu Zhou, Dusit Niyato, Zhimin He, Haozhen SituList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.05151Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.05151Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.05151Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416098311 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.05151 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.05151 |
| ids.openalex | https://openalex.org/W4416098311 |
| fwci | |
| type | preprint |
| title | Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.05151 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.05151 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.05151 |
| locations[1].id | doi:10.48550/arxiv.2505.05151 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.05151 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100333995 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7028-2144 |
| authorships[0].author.display_name | Chuangtao Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Chuangtao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038174569 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4873-5631 |
| authorships[1].author.display_name | Qinglin Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Qinglin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5081318069 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5408-8752 |
| authorships[2].author.display_name | MengChu Zhou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou, MengChu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091266202 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7442-7416 |
| authorships[3].author.display_name | Dusit Niyato |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Niyato, Dusit |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100334001 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1684-1758 |
| authorships[4].author.display_name | Zhimin He |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | He, Zhimin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5069987624 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7853-6647 |
| authorships[5].author.display_name | Haozhen Situ |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Situ, Haozhen |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.05151 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:05:05.978893 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.05151 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.05151 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.05151 |
| primary_location.id | pmh:oai:arXiv.org:2505.05151 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.05151 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.05151 |
| publication_date | 2025-05-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 48, 64, 87, 125, 137, 191 |
| abstract_inverted_index.By | 97 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.To | 59 |
| abstract_inverted_index.by | 118, 198 |
| abstract_inverted_index.in | 7, 13, 81, 113, 179, 195, 203 |
| abstract_inverted_index.of | 52, 110, 169 |
| abstract_inverted_index.on | 28 |
| abstract_inverted_index.to | 20, 47, 90, 106, 184 |
| abstract_inverted_index.we | 40, 62, 123, 135 |
| abstract_inverted_index.For | 133 |
| abstract_inverted_index.and | 79, 117, 147 |
| abstract_inverted_index.for | 129, 144, 152 |
| abstract_inverted_index.new | 192 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 93, 107, 120, 174, 200 |
| abstract_inverted_index.(KL) | 54 |
| abstract_inverted_index.data | 57 |
| abstract_inverted_index.from | 163 |
| abstract_inverted_index.pure | 164 |
| abstract_inverted_index.rely | 27 |
| abstract_inverted_index.role | 109 |
| abstract_inverted_index.that | 43, 140 |
| abstract_inverted_index.they | 25 |
| abstract_inverted_index.this | 38, 44, 188 |
| abstract_inverted_index.true | 94 |
| abstract_inverted_index.when | 33 |
| abstract_inverted_index.with | 56 |
| abstract_inverted_index.Model | 70 |
| abstract_inverted_index.avoid | 21 |
| abstract_inverted_index.data. | 18 |
| abstract_inverted_index.joint | 74, 95, 121, 155, 204 |
| abstract_inverted_index.large | 83 |
| abstract_inverted_index.leads | 46 |
| abstract_inverted_index.paper | 189 |
| abstract_inverted_index.prove | 42 |
| abstract_inverted_index.solid | 126 |
| abstract_inverted_index.this, | 61 |
| abstract_inverted_index.which | 72 |
| abstract_inverted_index.Bayes' | 103 |
| abstract_inverted_index.Hence, | 187 |
| abstract_inverted_index.costs, | 24 |
| abstract_inverted_index.design | 136 |
| abstract_inverted_index.linear | 50 |
| abstract_inverted_index.models | 2, 197 |
| abstract_inverted_index.noise, | 165 |
| abstract_inverted_index.states | 100 |
| abstract_inverted_index.study, | 39 |
| abstract_inverted_index.Hilbert | 84 |
| abstract_inverted_index.Quantum | 65 |
| abstract_inverted_index.address | 60 |
| abstract_inverted_index.advance | 6 |
| abstract_inverted_index.capture | 92 |
| abstract_inverted_index.circuit | 139 |
| abstract_inverted_index.complex | 181 |
| abstract_inverted_index.crucial | 108 |
| abstract_inverted_index.enables | 73, 160 |
| abstract_inverted_index.model's | 176 |
| abstract_inverted_index.models, | 116 |
| abstract_inverted_index.models. | 132, 171 |
| abstract_inverted_index.pathway | 89 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.quantum | 102, 138, 201 |
| abstract_inverted_index.scaling | 51 |
| abstract_inverted_index.sharing | 146 |
| abstract_inverted_index.similar | 105 |
| abstract_inverted_index.spaces, | 85 |
| abstract_inverted_index.success | 12 |
| abstract_inverted_index.through | 77, 101 |
| abstract_inverted_index.(QD3PM), | 71 |
| abstract_inverted_index.Discrete | 0, 66 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.accuracy | 178 |
| abstract_inverted_index.approach | 45, 159 |
| abstract_inverted_index.compared | 183 |
| abstract_inverted_index.complex, | 15 |
| abstract_inverted_index.deriving | 98 |
| abstract_inverted_index.discrete | 17 |
| abstract_inverted_index.existing | 170 |
| abstract_inverted_index.learning | 34, 76, 119 |
| abstract_inverted_index.methods. | 186 |
| abstract_inverted_index.modeling | 180 |
| abstract_inverted_index.offering | 86 |
| abstract_inverted_index.paradigm | 194 |
| abstract_inverted_index.proposed | 175 |
| abstract_inverted_index.sampling | 162 |
| abstract_inverted_index.superior | 177 |
| abstract_inverted_index.temporal | 142 |
| abstract_inverted_index.theorem, | 104 |
| abstract_inverted_index.utilizes | 141 |
| abstract_inverted_index.Denoising | 67 |
| abstract_inverted_index.Diffusion | 68 |
| abstract_inverted_index.advantage | 202 |
| abstract_inverted_index.classical | 114 |
| abstract_inverted_index.denoising | 80 |
| abstract_inverted_index.diffusion | 1, 78, 115, 131 |
| abstract_inverted_index.encoding. | 153 |
| abstract_inverted_index.establish | 124 |
| abstract_inverted_index.iterative | 167 |
| abstract_inverted_index.learnable | 149 |
| abstract_inverted_index.learning, | 157 |
| abstract_inverted_index.learning. | 206 |
| abstract_inverted_index.modeling, | 9 |
| abstract_inverted_index.parameter | 145 |
| abstract_inverted_index.posterior | 99, 111 |
| abstract_inverted_index.represent | 3 |
| abstract_inverted_index.rotations | 151 |
| abstract_inverted_index.typically | 26 |
| abstract_inverted_index.Exploiting | 154 |
| abstract_inverted_index.denoising, | 134 |
| abstract_inverted_index.dimension. | 58 |
| abstract_inverted_index.divergence | 55 |
| abstract_inverted_index.faithfully | 91 |
| abstract_inverted_index.foundation | 128 |
| abstract_inverted_index.generative | 8, 196 |
| abstract_inverted_index.leveraging | 199 |
| abstract_inverted_index.remarkable | 11 |
| abstract_inverted_index.rigorously | 41 |
| abstract_inverted_index.transition | 31 |
| abstract_inverted_index.worst-case | 49 |
| abstract_inverted_index.Simulations | 172 |
| abstract_inverted_index.calculating | 29 |
| abstract_inverted_index.demonstrate | 173 |
| abstract_inverted_index.eliminating | 166 |
| abstract_inverted_index.establishes | 190 |
| abstract_inverted_index.exponential | 22 |
| abstract_inverted_index.information | 143 |
| abstract_inverted_index.probability | 75 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.single-step | 161 |
| abstract_inverted_index.theoretical | 88, 127, 193 |
| abstract_inverted_index.distribution | 156, 205 |
| abstract_inverted_index.high-quality | 16 |
| abstract_inverted_index.incorporates | 148 |
| abstract_inverted_index.probability, | 122 |
| abstract_inverted_index.requirements | 168 |
| abstract_inverted_index.synthesizing | 14 |
| abstract_inverted_index.Probabilistic | 69 |
| abstract_inverted_index.computational | 23 |
| abstract_inverted_index.demonstrating | 10 |
| abstract_inverted_index.distribution. | 96 |
| abstract_inverted_index.distributions | 182 |
| abstract_inverted_index.exponentially | 82 |
| abstract_inverted_index.factorization | 185 |
| abstract_inverted_index.per-dimension | 30 |
| abstract_inverted_index.probabilities | 32, 112 |
| abstract_inverted_index.distributions. | 36 |
| abstract_inverted_index.Kullback-Leibler | 53 |
| abstract_inverted_index.high-dimensional | 35 |
| abstract_inverted_index.quantum-enhanced | 130 |
| abstract_inverted_index.classical-data-controlled | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |