Overview of Speaker Modeling and Its Applications: From the Lens of Deep Speaker Representation Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.15188
Speaker individuality information is among the most critical elements within speech signals. By thoroughly and accurately modeling this information, it can be utilized in various intelligent speech applications, such as speaker recognition, speaker diarization, speech synthesis, and target speaker extraction. In this overview, we present a comprehensive review of neural approaches to speaker representation learning from both theoretical and practical perspectives. Theoretically, we discuss speaker encoders ranging from supervised to self-supervised learning algorithms, standalone models to large pretrained models, pure speaker embedding learning to joint optimization with downstream tasks, and efforts toward interpretability. Practically, we systematically examine approaches for robustness and effectiveness, introduce and compare various open-source toolkits in the field. Through the systematic and comprehensive review of the relevant literature, research activities, and resources, we provide a clear reference for researchers in the speaker characterization and modeling field, as well as for those who wish to apply speaker modeling techniques to specific downstream tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.15188
- https://arxiv.org/pdf/2407.15188
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402856999
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402856999Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.15188Digital Object Identifier
- Title
-
Overview of Speaker Modeling and Its Applications: From the Lens of Deep Speaker Representation LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-21Full publication date if available
- Authors
-
Shuai Wang, Zhengyang Chen, Kong Aik Lee, Yanmin Qian, Haizhou LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.15188Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.15188Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.15188Direct OA link when available
- Concepts
-
Representation (politics), Speaker recognition, Computer science, Speech recognition, Linguistics, Artificial intelligence, Natural language processing, Political science, Philosophy, Law, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402856999 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.15188 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.15188 |
| ids.openalex | https://openalex.org/W4402856999 |
| fwci | |
| type | preprint |
| title | Overview of Speaker Modeling and Its Applications: From the Lens of Deep Speaker Representation Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9715999960899353 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776359362 |
| concepts[0].level | 3 |
| concepts[0].score | 0.660713255405426 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[0].display_name | Representation (politics) |
| concepts[1].id | https://openalex.org/C133892786 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5841243267059326 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1145189 |
| concepts[1].display_name | Speaker recognition |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5456994771957397 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.41393423080444336 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C41895202 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40154707431793213 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[4].display_name | Linguistics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33637791872024536 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3204822838306427 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08786529302597046 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.05868309736251831 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C199539241 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[9].display_name | Law |
| concepts[10].id | https://openalex.org/C94625758 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[10].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/representation |
| keywords[0].score | 0.660713255405426 |
| keywords[0].display_name | Representation (politics) |
| keywords[1].id | https://openalex.org/keywords/speaker-recognition |
| keywords[1].score | 0.5841243267059326 |
| keywords[1].display_name | Speaker recognition |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5456994771957397 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.41393423080444336 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/linguistics |
| keywords[4].score | 0.40154707431793213 |
| keywords[4].display_name | Linguistics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.33637791872024536 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.3204822838306427 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/political-science |
| keywords[7].score | 0.08786529302597046 |
| keywords[7].display_name | Political science |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.05868309736251831 |
| keywords[8].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.15188 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | public-domain |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.15188 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.15188 |
| locations[1].id | doi:10.48550/arxiv.2407.15188 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.15188 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100328312 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7897-2024 |
| authorships[0].author.display_name | Shuai Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Shuai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101416769 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1293-8146 |
| authorships[1].author.display_name | Zhengyang Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Zhengyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004287909 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9133-3000 |
| authorships[2].author.display_name | Kong Aik Lee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lee, Kong Aik |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100341993 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0314-3790 |
| authorships[3].author.display_name | Yanmin Qian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qian, Yanmin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032690182 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9158-9401 |
| authorships[4].author.display_name | Haizhou Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Li, Haizhou |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.15188 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-26T00:00:00 |
| display_name | Overview of Speaker Modeling and Its Applications: From the Lens of Deep Speaker Representation Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9715999960899353 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W4297807400, https://openalex.org/W1491159402, https://openalex.org/W4313854686, https://openalex.org/W321304764, https://openalex.org/W2249138175, https://openalex.org/W3162054169, https://openalex.org/W1813780412, https://openalex.org/W289407349, https://openalex.org/W2029134149, https://openalex.org/W2368768466 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.15188 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.15188 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.15188 |
| primary_location.id | pmh:oai:arXiv.org:2407.15188 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | public-domain |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.15188 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.15188 |
| publication_date | 2024-07-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 45, 127 |
| abstract_inverted_index.By | 12 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.as | 29, 139, 141 |
| abstract_inverted_index.be | 21 |
| abstract_inverted_index.in | 23, 108, 132 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 19 |
| abstract_inverted_index.of | 48, 117 |
| abstract_inverted_index.to | 51, 69, 75, 83, 146, 151 |
| abstract_inverted_index.we | 43, 62, 94, 125 |
| abstract_inverted_index.and | 14, 36, 58, 89, 100, 103, 114, 123, 136 |
| abstract_inverted_index.can | 20 |
| abstract_inverted_index.for | 98, 130, 142 |
| abstract_inverted_index.the | 5, 109, 112, 118, 133 |
| abstract_inverted_index.who | 144 |
| abstract_inverted_index.both | 56 |
| abstract_inverted_index.from | 55, 67 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.pure | 79 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.this | 17, 41 |
| abstract_inverted_index.well | 140 |
| abstract_inverted_index.wish | 145 |
| abstract_inverted_index.with | 86 |
| abstract_inverted_index.among | 4 |
| abstract_inverted_index.apply | 147 |
| abstract_inverted_index.clear | 128 |
| abstract_inverted_index.joint | 84 |
| abstract_inverted_index.large | 76 |
| abstract_inverted_index.those | 143 |
| abstract_inverted_index.field, | 138 |
| abstract_inverted_index.field. | 110 |
| abstract_inverted_index.models | 74 |
| abstract_inverted_index.neural | 49 |
| abstract_inverted_index.review | 47, 116 |
| abstract_inverted_index.speech | 10, 26, 34 |
| abstract_inverted_index.target | 37 |
| abstract_inverted_index.tasks, | 88 |
| abstract_inverted_index.tasks. | 154 |
| abstract_inverted_index.toward | 91 |
| abstract_inverted_index.within | 9 |
| abstract_inverted_index.Speaker | 0 |
| abstract_inverted_index.Through | 111 |
| abstract_inverted_index.compare | 104 |
| abstract_inverted_index.discuss | 63 |
| abstract_inverted_index.efforts | 90 |
| abstract_inverted_index.examine | 96 |
| abstract_inverted_index.models, | 78 |
| abstract_inverted_index.present | 44 |
| abstract_inverted_index.provide | 126 |
| abstract_inverted_index.ranging | 66 |
| abstract_inverted_index.speaker | 30, 32, 38, 52, 64, 80, 134, 148 |
| abstract_inverted_index.various | 24, 105 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.elements | 8 |
| abstract_inverted_index.encoders | 65 |
| abstract_inverted_index.learning | 54, 71, 82 |
| abstract_inverted_index.modeling | 16, 137, 149 |
| abstract_inverted_index.relevant | 119 |
| abstract_inverted_index.research | 121 |
| abstract_inverted_index.signals. | 11 |
| abstract_inverted_index.specific | 152 |
| abstract_inverted_index.toolkits | 107 |
| abstract_inverted_index.utilized | 22 |
| abstract_inverted_index.embedding | 81 |
| abstract_inverted_index.introduce | 102 |
| abstract_inverted_index.overview, | 42 |
| abstract_inverted_index.practical | 59 |
| abstract_inverted_index.reference | 129 |
| abstract_inverted_index.accurately | 15 |
| abstract_inverted_index.approaches | 50, 97 |
| abstract_inverted_index.downstream | 87, 153 |
| abstract_inverted_index.pretrained | 77 |
| abstract_inverted_index.resources, | 124 |
| abstract_inverted_index.robustness | 99 |
| abstract_inverted_index.standalone | 73 |
| abstract_inverted_index.supervised | 68 |
| abstract_inverted_index.synthesis, | 35 |
| abstract_inverted_index.systematic | 113 |
| abstract_inverted_index.techniques | 150 |
| abstract_inverted_index.thoroughly | 13 |
| abstract_inverted_index.activities, | 122 |
| abstract_inverted_index.algorithms, | 72 |
| abstract_inverted_index.extraction. | 39 |
| abstract_inverted_index.information | 2 |
| abstract_inverted_index.intelligent | 25 |
| abstract_inverted_index.literature, | 120 |
| abstract_inverted_index.open-source | 106 |
| abstract_inverted_index.researchers | 131 |
| abstract_inverted_index.theoretical | 57 |
| abstract_inverted_index.Practically, | 93 |
| abstract_inverted_index.diarization, | 33 |
| abstract_inverted_index.information, | 18 |
| abstract_inverted_index.optimization | 85 |
| abstract_inverted_index.recognition, | 31 |
| abstract_inverted_index.applications, | 27 |
| abstract_inverted_index.comprehensive | 46, 115 |
| abstract_inverted_index.individuality | 1 |
| abstract_inverted_index.perspectives. | 60 |
| abstract_inverted_index.Theoretically, | 61 |
| abstract_inverted_index.effectiveness, | 101 |
| abstract_inverted_index.representation | 53 |
| abstract_inverted_index.systematically | 95 |
| abstract_inverted_index.self-supervised | 70 |
| abstract_inverted_index.characterization | 135 |
| abstract_inverted_index.interpretability. | 92 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |