$p$-Adic hypergeometric functions and certain weight three newforms Article Swipe
Sulakashna
,
Rupam Barman
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.16939
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.16939
For an odd prime $p$ and a positive integer $n$, let ${_n}G_n[\cdots]_p$ denote McCarthy's $p$-adic hypergeometric function. In this article, we prove $p$-adic analogue of certain classical hypergeometric identities and using these identities we express the $p$-th Fourier coefficient of certain weight three newforms in terms of special values of ${_3}G_3[\cdots]_p$. Rodriguez-Villegas conjectured certain supercongruences between values of truncated hypergeometric series and the $p$-th Fourier coefficients of these newforms. As a consequence of our main results, we obtain another proof of these supercongruences which were earlier proved by Mortenson and Sun.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.16939
- https://arxiv.org/pdf/2403.16939
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393213757
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393213757Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.16939Digital Object Identifier
- Title
-
$p$-Adic hypergeometric functions and certain weight three newformsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-25Full publication date if available
- Authors
-
Sulakashna, Rupam BarmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.16939Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.16939Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.16939Direct OA link when available
- Concepts
-
Conjecture, Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393213757 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.16939 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.16939 |
| ids.openalex | https://openalex.org/W4393213757 |
| fwci | |
| type | preprint |
| title | $p$-Adic hypergeometric functions and certain weight three newforms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11428 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2602 |
| topics[0].subfield.display_name | Algebra and Number Theory |
| topics[0].display_name | Advanced Mathematical Identities |
| topics[1].id | https://openalex.org/T14500 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Advanced Mathematical Theories |
| topics[2].id | https://openalex.org/T13720 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Benford’s Law and Fraud Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780990831 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6736109256744385 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q319141 |
| concepts[0].display_name | Conjecture |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5343994498252869 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4606618285179138 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/conjecture |
| keywords[0].score | 0.6736109256744385 |
| keywords[0].display_name | Conjecture |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5343994498252869 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.4606618285179138 |
| keywords[2].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.16939 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.16939 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.16939 |
| locations[1].id | doi:10.48550/arxiv.2403.16939 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.16939 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038319633 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sulakashna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sulakashna |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047126432 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4480-1788 |
| authorships[1].author.display_name | Rupam Barman |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Barman, Rupam |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.16939 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-27T00:00:00 |
| display_name | $p$-Adic hypergeometric functions and certain weight three newforms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11428 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2602 |
| primary_topic.subfield.display_name | Algebra and Number Theory |
| primary_topic.display_name | Advanced Mathematical Identities |
| related_works | https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885, https://openalex.org/W2963966623 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.16939 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.16939 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.16939 |
| primary_location.id | pmh:oai:arXiv.org:2403.16939 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.16939 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.16939 |
| publication_date | 2024-03-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 70 |
| abstract_inverted_index.As | 69 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.an | 1 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.of | 24, 39, 46, 49, 57, 66, 72, 80 |
| abstract_inverted_index.we | 20, 33, 76 |
| abstract_inverted_index.$p$ | 4 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.and | 5, 29, 61, 89 |
| abstract_inverted_index.let | 10 |
| abstract_inverted_index.odd | 2 |
| abstract_inverted_index.our | 73 |
| abstract_inverted_index.the | 35, 62 |
| abstract_inverted_index.$n$, | 9 |
| abstract_inverted_index.Sun. | 90 |
| abstract_inverted_index.main | 74 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.were | 84 |
| abstract_inverted_index.prime | 3 |
| abstract_inverted_index.proof | 79 |
| abstract_inverted_index.prove | 21 |
| abstract_inverted_index.terms | 45 |
| abstract_inverted_index.these | 31, 67, 81 |
| abstract_inverted_index.three | 42 |
| abstract_inverted_index.using | 30 |
| abstract_inverted_index.which | 83 |
| abstract_inverted_index.$p$-th | 36, 63 |
| abstract_inverted_index.denote | 12 |
| abstract_inverted_index.obtain | 77 |
| abstract_inverted_index.proved | 86 |
| abstract_inverted_index.series | 60 |
| abstract_inverted_index.values | 48, 56 |
| abstract_inverted_index.weight | 41 |
| abstract_inverted_index.Fourier | 37, 64 |
| abstract_inverted_index.another | 78 |
| abstract_inverted_index.between | 55 |
| abstract_inverted_index.certain | 25, 40, 53 |
| abstract_inverted_index.earlier | 85 |
| abstract_inverted_index.express | 34 |
| abstract_inverted_index.integer | 8 |
| abstract_inverted_index.special | 47 |
| abstract_inverted_index.$p$-adic | 14, 22 |
| abstract_inverted_index.analogue | 23 |
| abstract_inverted_index.article, | 19 |
| abstract_inverted_index.newforms | 43 |
| abstract_inverted_index.positive | 7 |
| abstract_inverted_index.results, | 75 |
| abstract_inverted_index.Mortenson | 88 |
| abstract_inverted_index.classical | 26 |
| abstract_inverted_index.function. | 16 |
| abstract_inverted_index.newforms. | 68 |
| abstract_inverted_index.truncated | 58 |
| abstract_inverted_index.McCarthy's | 13 |
| abstract_inverted_index.identities | 28, 32 |
| abstract_inverted_index.coefficient | 38 |
| abstract_inverted_index.conjectured | 52 |
| abstract_inverted_index.consequence | 71 |
| abstract_inverted_index.coefficients | 65 |
| abstract_inverted_index.hypergeometric | 15, 27, 59 |
| abstract_inverted_index.supercongruences | 54, 82 |
| abstract_inverted_index.Rodriguez-Villegas | 51 |
| abstract_inverted_index.${_n}G_n[\cdots]_p$ | 11 |
| abstract_inverted_index.${_3}G_3[\cdots]_p$. | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |