$p$-Adic hypergeometric functions and the trace of Frobenius of elliptic curves Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.03259
Let $p$ be an odd prime and $q=p^r$, $r\geq 1$. For positive integers $n$, let ${_n}G_n[\cdots]_q$ denote McCarthy's $p$-adic hypergeometric functions. In this article, we prove an identity expressing a ${_4}G_4[\cdots]_q$ hypergeometric function as a sum of two ${_2}G_2[\cdots]_q$ hypergeometric functions. This identity generalizes some known identities satisfied by the finite field hypergeometric functions. We also prove a transfomation that relates ${_{n+2}}G_{n+2}[\cdots]_q$ and ${_n}G_n[\cdots]_q$ hypergeometric functions. Next, we express the trace of Frobenius of elliptic curves in terms of special values of ${_4}G_4[\cdots]_q$ and ${_6}G_6[\cdots]_q$ hypergeometric functions. Our results extend the recent works of Tripathi and Meher on the finite field hypergeometric functions to wider classes of primes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.03259
- https://arxiv.org/pdf/2311.03259
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388482141
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388482141Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.03259Digital Object Identifier
- Title
-
$p$-Adic hypergeometric functions and the trace of Frobenius of elliptic curvesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-06Full publication date if available
- Authors
-
Sulakashna, Rupam BarmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.03259Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.03259Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.03259Direct OA link when available
- Concepts
-
Hypergeometric function, Basic hypergeometric series, Mathematics, Generalized hypergeometric function, TRACE (psycholinguistics), Hypergeometric identity, Hypergeometric distribution, Identity (music), Confluent hypergeometric function, Pure mathematics, Field (mathematics), Elliptic curve, Hypergeometric function of a matrix argument, Physics, Linguistics, Philosophy, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388482141 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.03259 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.03259 |
| ids.openalex | https://openalex.org/W4388482141 |
| fwci | |
| type | preprint |
| title | $p$-Adic hypergeometric functions and the trace of Frobenius of elliptic curves |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11428 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2602 |
| topics[0].subfield.display_name | Algebra and Number Theory |
| topics[0].display_name | Advanced Mathematical Identities |
| topics[1].id | https://openalex.org/T10061 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Algebraic Geometry and Number Theory |
| topics[2].id | https://openalex.org/T11166 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Analytic Number Theory Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C197320386 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7680573463439941 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21028472 |
| concepts[0].display_name | Hypergeometric function |
| concepts[1].id | https://openalex.org/C92941272 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7122026681900024 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1062958 |
| concepts[1].display_name | Basic hypergeometric series |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6244521141052246 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C158241908 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6219403743743896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q109744257 |
| concepts[3].display_name | Generalized hypergeometric function |
| concepts[4].id | https://openalex.org/C75291252 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5847200155258179 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1315756 |
| concepts[4].display_name | TRACE (psycholinguistics) |
| concepts[5].id | https://openalex.org/C60400383 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5745096802711487 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17028407 |
| concepts[5].display_name | Hypergeometric identity |
| concepts[6].id | https://openalex.org/C176671685 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5587716698646545 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q730600 |
| concepts[6].display_name | Hypergeometric distribution |
| concepts[7].id | https://openalex.org/C2778355321 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5574759244918823 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17079427 |
| concepts[7].display_name | Identity (music) |
| concepts[8].id | https://openalex.org/C148160416 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5510094165802002 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q783948 |
| concepts[8].display_name | Confluent hypergeometric function |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4919392764568329 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| concepts[10].id | https://openalex.org/C9652623 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4690290689468384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[10].display_name | Field (mathematics) |
| concepts[11].id | https://openalex.org/C179603306 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4280426502227783 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q268493 |
| concepts[11].display_name | Elliptic curve |
| concepts[12].id | https://openalex.org/C165175332 |
| concepts[12].level | 4 |
| concepts[12].score | 0.41893208026885986 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5958021 |
| concepts[12].display_name | Hypergeometric function of a matrix argument |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.16358202695846558 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.04639333486557007 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.04625776410102844 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C24890656 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[16].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/hypergeometric-function |
| keywords[0].score | 0.7680573463439941 |
| keywords[0].display_name | Hypergeometric function |
| keywords[1].id | https://openalex.org/keywords/basic-hypergeometric-series |
| keywords[1].score | 0.7122026681900024 |
| keywords[1].display_name | Basic hypergeometric series |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.6244521141052246 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/generalized-hypergeometric-function |
| keywords[3].score | 0.6219403743743896 |
| keywords[3].display_name | Generalized hypergeometric function |
| keywords[4].id | https://openalex.org/keywords/trace |
| keywords[4].score | 0.5847200155258179 |
| keywords[4].display_name | TRACE (psycholinguistics) |
| keywords[5].id | https://openalex.org/keywords/hypergeometric-identity |
| keywords[5].score | 0.5745096802711487 |
| keywords[5].display_name | Hypergeometric identity |
| keywords[6].id | https://openalex.org/keywords/hypergeometric-distribution |
| keywords[6].score | 0.5587716698646545 |
| keywords[6].display_name | Hypergeometric distribution |
| keywords[7].id | https://openalex.org/keywords/identity |
| keywords[7].score | 0.5574759244918823 |
| keywords[7].display_name | Identity (music) |
| keywords[8].id | https://openalex.org/keywords/confluent-hypergeometric-function |
| keywords[8].score | 0.5510094165802002 |
| keywords[8].display_name | Confluent hypergeometric function |
| keywords[9].id | https://openalex.org/keywords/pure-mathematics |
| keywords[9].score | 0.4919392764568329 |
| keywords[9].display_name | Pure mathematics |
| keywords[10].id | https://openalex.org/keywords/field |
| keywords[10].score | 0.4690290689468384 |
| keywords[10].display_name | Field (mathematics) |
| keywords[11].id | https://openalex.org/keywords/elliptic-curve |
| keywords[11].score | 0.4280426502227783 |
| keywords[11].display_name | Elliptic curve |
| keywords[12].id | https://openalex.org/keywords/hypergeometric-function-of-a-matrix-argument |
| keywords[12].score | 0.41893208026885986 |
| keywords[12].display_name | Hypergeometric function of a matrix argument |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.16358202695846558 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/linguistics |
| keywords[14].score | 0.04639333486557007 |
| keywords[14].display_name | Linguistics |
| keywords[15].id | https://openalex.org/keywords/philosophy |
| keywords[15].score | 0.04625776410102844 |
| keywords[15].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.03259 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.03259 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.03259 |
| locations[1].id | doi:10.48550/arxiv.2311.03259 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.03259 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038319633 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sulakashna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sulakashna |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047126432 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4480-1788 |
| authorships[1].author.display_name | Rupam Barman |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Barman, Rupam |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.03259 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | $p$-Adic hypergeometric functions and the trace of Frobenius of elliptic curves |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11428 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2602 |
| primary_topic.subfield.display_name | Algebra and Number Theory |
| primary_topic.display_name | Advanced Mathematical Identities |
| related_works | https://openalex.org/W2080918621, https://openalex.org/W4223493164, https://openalex.org/W2036138207, https://openalex.org/W4250496774, https://openalex.org/W2801891693, https://openalex.org/W2078566267, https://openalex.org/W4252934369, https://openalex.org/W3160935812, https://openalex.org/W753903040, https://openalex.org/W2086105615 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.03259 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.03259 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.03259 |
| primary_location.id | pmh:oai:arXiv.org:2311.03259 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.03259 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.03259 |
| publication_date | 2023-11-06 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 34, 57 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 54 |
| abstract_inverted_index.an | 3, 26 |
| abstract_inverted_index.as | 33 |
| abstract_inverted_index.be | 2 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 76 |
| abstract_inverted_index.of | 36, 71, 73, 78, 81, 93, 106 |
| abstract_inverted_index.on | 97 |
| abstract_inverted_index.to | 103 |
| abstract_inverted_index.we | 24, 67 |
| abstract_inverted_index.$p$ | 1 |
| abstract_inverted_index.1$. | 9 |
| abstract_inverted_index.For | 10 |
| abstract_inverted_index.Let | 0 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.and | 6, 62, 83, 95 |
| abstract_inverted_index.let | 14 |
| abstract_inverted_index.odd | 4 |
| abstract_inverted_index.sum | 35 |
| abstract_inverted_index.the | 49, 69, 90, 98 |
| abstract_inverted_index.two | 37 |
| abstract_inverted_index.$n$, | 13 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.also | 55 |
| abstract_inverted_index.some | 44 |
| abstract_inverted_index.that | 59 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.Meher | 96 |
| abstract_inverted_index.Next, | 66 |
| abstract_inverted_index.field | 51, 100 |
| abstract_inverted_index.known | 45 |
| abstract_inverted_index.prime | 5 |
| abstract_inverted_index.prove | 25, 56 |
| abstract_inverted_index.terms | 77 |
| abstract_inverted_index.trace | 70 |
| abstract_inverted_index.wider | 104 |
| abstract_inverted_index.works | 92 |
| abstract_inverted_index.$r\geq | 8 |
| abstract_inverted_index.curves | 75 |
| abstract_inverted_index.denote | 16 |
| abstract_inverted_index.extend | 89 |
| abstract_inverted_index.finite | 50, 99 |
| abstract_inverted_index.recent | 91 |
| abstract_inverted_index.values | 80 |
| abstract_inverted_index.classes | 105 |
| abstract_inverted_index.express | 68 |
| abstract_inverted_index.primes. | 107 |
| abstract_inverted_index.relates | 60 |
| abstract_inverted_index.results | 88 |
| abstract_inverted_index.special | 79 |
| abstract_inverted_index.$p$-adic | 18 |
| abstract_inverted_index.$q=p^r$, | 7 |
| abstract_inverted_index.Tripathi | 94 |
| abstract_inverted_index.article, | 23 |
| abstract_inverted_index.elliptic | 74 |
| abstract_inverted_index.function | 32 |
| abstract_inverted_index.identity | 27, 42 |
| abstract_inverted_index.integers | 12 |
| abstract_inverted_index.positive | 11 |
| abstract_inverted_index.Frobenius | 72 |
| abstract_inverted_index.functions | 102 |
| abstract_inverted_index.satisfied | 47 |
| abstract_inverted_index.McCarthy's | 17 |
| abstract_inverted_index.expressing | 28 |
| abstract_inverted_index.functions. | 20, 40, 53, 65, 86 |
| abstract_inverted_index.identities | 46 |
| abstract_inverted_index.generalizes | 43 |
| abstract_inverted_index.transfomation | 58 |
| abstract_inverted_index.hypergeometric | 19, 31, 39, 52, 64, 85, 101 |
| abstract_inverted_index.${_2}G_2[\cdots]_q$ | 38 |
| abstract_inverted_index.${_4}G_4[\cdots]_q$ | 30, 82 |
| abstract_inverted_index.${_6}G_6[\cdots]_q$ | 84 |
| abstract_inverted_index.${_n}G_n[\cdots]_q$ | 15, 63 |
| abstract_inverted_index.${_{n+2}}G_{n+2}[\cdots]_q$ | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |