P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.04960
In recent years, the rise of large language models (LLMs) has made it possible to directly achieve named entity recognition (NER) without any demonstration samples or only using a few samples through in-context learning (ICL). However, standard ICL only helps LLMs understand task instructions, format and input-label mapping, but neglects the particularity of the NER task itself. In this paper, we propose a new prompting framework P-ICL to better achieve NER with LLMs, in which some point entities are leveraged as the auxiliary information to recognize each entity type. With such significant information, the LLM can achieve entity classification more precisely. To obtain optimal point entities for prompting LLMs, we also proposed a point entity selection method based on K-Means clustering. Our extensive experiments on some representative NER benchmarks verify the effectiveness of our proposed strategies in P-ICL and point entity selection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.04960
- https://arxiv.org/pdf/2405.04960
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396816741
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396816741Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.04960Digital Object Identifier
- Title
-
P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-08Full publication date if available
- Authors
-
Guochao Jiang, Zepeng Ding, Yuchen Shi, Deqing YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.04960Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.04960Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.04960Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Named-entity recognition, Point (geometry), Natural language processing, Artificial intelligence, Language model, Entity linking, Geography, Mathematics, Engineering, Task (project management), Geometry, Archaeology, Knowledge base, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396816741 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.04960 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.04960 |
| ids.openalex | https://openalex.org/W4396816741 |
| fwci | |
| type | preprint |
| title | P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9902999997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6929186582565308 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6543550491333008 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C2779135771 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6414267420768738 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q403574 |
| concepts[2].display_name | Named-entity recognition |
| concepts[3].id | https://openalex.org/C28719098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6357208490371704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[3].display_name | Point (geometry) |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5979672074317932 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.475564181804657 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C137293760 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46209967136383057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[6].display_name | Language model |
| concepts[7].id | https://openalex.org/C96711827 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41800397634506226 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17012245 |
| concepts[7].display_name | Entity linking |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10252445936203003 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0948604941368103 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07389914989471436 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C2780451532 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[11].display_name | Task (project management) |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C166957645 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[13].display_name | Archaeology |
| concepts[14].id | https://openalex.org/C4554734 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q593744 |
| concepts[14].display_name | Knowledge base |
| concepts[15].id | https://openalex.org/C201995342 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[15].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6929186582565308 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.6543550491333008 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/named-entity-recognition |
| keywords[2].score | 0.6414267420768738 |
| keywords[2].display_name | Named-entity recognition |
| keywords[3].id | https://openalex.org/keywords/point |
| keywords[3].score | 0.6357208490371704 |
| keywords[3].display_name | Point (geometry) |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.5979672074317932 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.475564181804657 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/language-model |
| keywords[6].score | 0.46209967136383057 |
| keywords[6].display_name | Language model |
| keywords[7].id | https://openalex.org/keywords/entity-linking |
| keywords[7].score | 0.41800397634506226 |
| keywords[7].display_name | Entity linking |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.10252445936203003 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.0948604941368103 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.07389914989471436 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.04960 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.04960 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.04960 |
| locations[1].id | doi:10.48550/arxiv.2405.04960 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.04960 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109715043 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-3415-4473 |
| authorships[0].author.display_name | Guochao Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Guochao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058865385 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zepeng Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ding, Zepeng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101935762 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1885-8043 |
| authorships[2].author.display_name | Yuchen Shi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shi, Yuchen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5046589466 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1958-7182 |
| authorships[3].author.display_name | Deqing Yang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yang, Deqing |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.04960 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-11T00:00:00 |
| display_name | P-ICL: Point In-Context Learning for Named Entity Recognition with Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2186562580, https://openalex.org/W3198729192, https://openalex.org/W4255258373, https://openalex.org/W3000685722, https://openalex.org/W2593907245, https://openalex.org/W2520117834, https://openalex.org/W626980589, https://openalex.org/W4313162113, https://openalex.org/W3005759282, https://openalex.org/W4390279576 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.04960 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.04960 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.04960 |
| primary_location.id | pmh:oai:arXiv.org:2405.04960 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.04960 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.04960 |
| publication_date | 2024-05-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28, 62, 112 |
| abstract_inverted_index.In | 0, 57 |
| abstract_inverted_index.To | 101 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.in | 73, 136 |
| abstract_inverted_index.it | 12 |
| abstract_inverted_index.of | 5, 52, 132 |
| abstract_inverted_index.on | 118, 124 |
| abstract_inverted_index.or | 25 |
| abstract_inverted_index.to | 14, 67, 84 |
| abstract_inverted_index.we | 60, 109 |
| abstract_inverted_index.ICL | 37 |
| abstract_inverted_index.LLM | 94 |
| abstract_inverted_index.NER | 54, 70, 127 |
| abstract_inverted_index.Our | 121 |
| abstract_inverted_index.and | 45, 138 |
| abstract_inverted_index.any | 22 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.but | 48 |
| abstract_inverted_index.can | 95 |
| abstract_inverted_index.few | 29 |
| abstract_inverted_index.for | 106 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.new | 63 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 3, 50, 53, 81, 93, 130 |
| abstract_inverted_index.LLMs | 40 |
| abstract_inverted_index.With | 89 |
| abstract_inverted_index.also | 110 |
| abstract_inverted_index.each | 86 |
| abstract_inverted_index.made | 11 |
| abstract_inverted_index.more | 99 |
| abstract_inverted_index.only | 26, 38 |
| abstract_inverted_index.rise | 4 |
| abstract_inverted_index.some | 75, 125 |
| abstract_inverted_index.such | 90 |
| abstract_inverted_index.task | 42, 55 |
| abstract_inverted_index.this | 58 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.(NER) | 20 |
| abstract_inverted_index.LLMs, | 72, 108 |
| abstract_inverted_index.P-ICL | 66, 137 |
| abstract_inverted_index.based | 117 |
| abstract_inverted_index.helps | 39 |
| abstract_inverted_index.large | 6 |
| abstract_inverted_index.named | 17 |
| abstract_inverted_index.point | 76, 104, 113, 139 |
| abstract_inverted_index.type. | 88 |
| abstract_inverted_index.using | 27 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.(ICL). | 34 |
| abstract_inverted_index.(LLMs) | 9 |
| abstract_inverted_index.better | 68 |
| abstract_inverted_index.entity | 18, 87, 97, 114, 140 |
| abstract_inverted_index.format | 44 |
| abstract_inverted_index.method | 116 |
| abstract_inverted_index.models | 8 |
| abstract_inverted_index.obtain | 102 |
| abstract_inverted_index.paper, | 59 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.verify | 129 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.K-Means | 119 |
| abstract_inverted_index.achieve | 16, 69, 96 |
| abstract_inverted_index.itself. | 56 |
| abstract_inverted_index.optimal | 103 |
| abstract_inverted_index.propose | 61 |
| abstract_inverted_index.samples | 24, 30 |
| abstract_inverted_index.through | 31 |
| abstract_inverted_index.without | 21 |
| abstract_inverted_index.However, | 35 |
| abstract_inverted_index.directly | 15 |
| abstract_inverted_index.entities | 77, 105 |
| abstract_inverted_index.language | 7 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.mapping, | 47 |
| abstract_inverted_index.neglects | 49 |
| abstract_inverted_index.possible | 13 |
| abstract_inverted_index.proposed | 111, 134 |
| abstract_inverted_index.standard | 36 |
| abstract_inverted_index.auxiliary | 82 |
| abstract_inverted_index.extensive | 122 |
| abstract_inverted_index.framework | 65 |
| abstract_inverted_index.leveraged | 79 |
| abstract_inverted_index.prompting | 64, 107 |
| abstract_inverted_index.recognize | 85 |
| abstract_inverted_index.selection | 115 |
| abstract_inverted_index.benchmarks | 128 |
| abstract_inverted_index.in-context | 32 |
| abstract_inverted_index.precisely. | 100 |
| abstract_inverted_index.selection. | 141 |
| abstract_inverted_index.strategies | 135 |
| abstract_inverted_index.understand | 41 |
| abstract_inverted_index.clustering. | 120 |
| abstract_inverted_index.experiments | 123 |
| abstract_inverted_index.information | 83 |
| abstract_inverted_index.input-label | 46 |
| abstract_inverted_index.recognition | 19 |
| abstract_inverted_index.significant | 91 |
| abstract_inverted_index.information, | 92 |
| abstract_inverted_index.demonstration | 23 |
| abstract_inverted_index.effectiveness | 131 |
| abstract_inverted_index.instructions, | 43 |
| abstract_inverted_index.particularity | 51 |
| abstract_inverted_index.classification | 98 |
| abstract_inverted_index.representative | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |