Panel Data Models with Time-Varying Latent Group Structures Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.15863
This paper considers a linear panel model with interactive fixed effects and unobserved individual and time heterogeneities that are captured by some latent group structures and an unknown structural break, respectively. To enhance realism the model may have different numbers of groups and/or different group memberships before and after the break. With the preliminary nuclear-norm-regularized estimation followed by row- and column-wise linear regressions, we estimate the break point based on the idea of binary segmentation and the latent group structures together with the number of groups before and after the break by sequential testing K-means algorithm simultaneously. It is shown that the break point, the number of groups and the group memberships can each be estimated correctly with probability approaching one. Asymptotic distributions of the estimators of the slope coefficients are established. Monte Carlo simulations demonstrate excellent finite sample performance for the proposed estimation algorithm. An empirical application to real house price data across 377 Metropolitan Statistical Areas in the US from 1975 to 2014 suggests the presence both of structural breaks and of changes in group membership.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.15863
- https://arxiv.org/pdf/2307.15863
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385473535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385473535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.15863Digital Object Identifier
- Title
-
Panel Data Models with Time-Varying Latent Group StructuresWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-29Full publication date if available
- Authors
-
Yiren Wang, Peter C.B. Phillips, Liangjun SuList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.15863Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.15863Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.15863Direct OA link when available
- Concepts
-
Estimator, Group (periodic table), Panel data, Mathematics, Monte Carlo method, Binary number, Algorithm, Statistics, Econometrics, Computer science, Organic chemistry, Chemistry, ArithmeticTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385473535 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.15863 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.15863 |
| ids.openalex | https://openalex.org/W4385473535 |
| fwci | |
| type | preprint |
| title | Panel Data Models with Time-Varying Latent Group Structures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11911 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Spatial and Panel Data Analysis |
| topics[1].id | https://openalex.org/T11014 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9718999862670898 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Regional Economics and Spatial Analysis |
| topics[2].id | https://openalex.org/T10438 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9710999727249146 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Energy, Environment, Economic Growth |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7218718528747559 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C2781311116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6122689247131348 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[1].display_name | Group (periodic table) |
| concepts[2].id | https://openalex.org/C6422946 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5196829438209534 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q857354 |
| concepts[2].display_name | Panel data |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48887938261032104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C19499675 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47630488872528076 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[4].display_name | Monte Carlo method |
| concepts[5].id | https://openalex.org/C48372109 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4731225371360779 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[5].display_name | Binary number |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3948609232902527 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38114333152770996 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3676754832267761 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32095205783843994 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C178790620 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[10].display_name | Organic chemistry |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C94375191 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[12].display_name | Arithmetic |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.7218718528747559 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/group |
| keywords[1].score | 0.6122689247131348 |
| keywords[1].display_name | Group (periodic table) |
| keywords[2].id | https://openalex.org/keywords/panel-data |
| keywords[2].score | 0.5196829438209534 |
| keywords[2].display_name | Panel data |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.48887938261032104 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[4].score | 0.47630488872528076 |
| keywords[4].display_name | Monte Carlo method |
| keywords[5].id | https://openalex.org/keywords/binary-number |
| keywords[5].score | 0.4731225371360779 |
| keywords[5].display_name | Binary number |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3948609232902527 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.38114333152770996 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.3676754832267761 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.32095205783843994 |
| keywords[9].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.15863 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.15863 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.15863 |
| locations[1].id | doi:10.48550/arxiv.2307.15863 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.15863 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100723440 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1102-4609 |
| authorships[0].author.display_name | Yiren Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Yiren |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076177583 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2341-0451 |
| authorships[1].author.display_name | Peter C.B. Phillips |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Phillips, Peter C B |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044007453 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0565-6928 |
| authorships[2].author.display_name | Liangjun Su |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Su, Liangjun |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.15863 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Panel Data Models with Time-Varying Latent Group Structures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11911 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Spatial and Panel Data Analysis |
| related_works | https://openalex.org/W4287880334, https://openalex.org/W4366700029, https://openalex.org/W4285230481, https://openalex.org/W4385769873, https://openalex.org/W2015759683, https://openalex.org/W4281634296, https://openalex.org/W4319161863, https://openalex.org/W2371687270, https://openalex.org/W4307819175, https://openalex.org/W2063207649 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.15863 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.15863 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.15863 |
| primary_location.id | pmh:oai:arXiv.org:2307.15863 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.15863 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.15863 |
| publication_date | 2023-07-29 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.An | 145 |
| abstract_inverted_index.It | 97 |
| abstract_inverted_index.To | 31 |
| abstract_inverted_index.US | 160 |
| abstract_inverted_index.an | 26 |
| abstract_inverted_index.be | 114 |
| abstract_inverted_index.by | 20, 57, 91 |
| abstract_inverted_index.in | 158, 175 |
| abstract_inverted_index.is | 98 |
| abstract_inverted_index.of | 40, 72, 84, 106, 123, 126, 169, 173 |
| abstract_inverted_index.on | 69 |
| abstract_inverted_index.to | 148, 163 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.377 | 154 |
| abstract_inverted_index.and | 11, 14, 25, 47, 59, 75, 87, 108, 172 |
| abstract_inverted_index.are | 18, 130 |
| abstract_inverted_index.can | 112 |
| abstract_inverted_index.for | 140 |
| abstract_inverted_index.may | 36 |
| abstract_inverted_index.the | 34, 49, 52, 65, 70, 76, 82, 89, 101, 104, 109, 124, 127, 141, 159, 166 |
| abstract_inverted_index.1975 | 162 |
| abstract_inverted_index.2014 | 164 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.With | 51 |
| abstract_inverted_index.both | 168 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.each | 113 |
| abstract_inverted_index.from | 161 |
| abstract_inverted_index.have | 37 |
| abstract_inverted_index.idea | 71 |
| abstract_inverted_index.one. | 120 |
| abstract_inverted_index.real | 149 |
| abstract_inverted_index.row- | 58 |
| abstract_inverted_index.some | 21 |
| abstract_inverted_index.that | 17, 100 |
| abstract_inverted_index.time | 15 |
| abstract_inverted_index.with | 7, 81, 117 |
| abstract_inverted_index.Areas | 157 |
| abstract_inverted_index.Carlo | 133 |
| abstract_inverted_index.Monte | 132 |
| abstract_inverted_index.after | 48, 88 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.break | 66, 90, 102 |
| abstract_inverted_index.fixed | 9 |
| abstract_inverted_index.group | 23, 44, 78, 110, 176 |
| abstract_inverted_index.house | 150 |
| abstract_inverted_index.model | 6, 35 |
| abstract_inverted_index.panel | 5 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.point | 67 |
| abstract_inverted_index.price | 151 |
| abstract_inverted_index.shown | 99 |
| abstract_inverted_index.slope | 128 |
| abstract_inverted_index.across | 153 |
| abstract_inverted_index.and/or | 42 |
| abstract_inverted_index.before | 46, 86 |
| abstract_inverted_index.binary | 73 |
| abstract_inverted_index.break, | 29 |
| abstract_inverted_index.break. | 50 |
| abstract_inverted_index.breaks | 171 |
| abstract_inverted_index.finite | 137 |
| abstract_inverted_index.groups | 41, 85, 107 |
| abstract_inverted_index.latent | 22, 77 |
| abstract_inverted_index.linear | 4, 61 |
| abstract_inverted_index.number | 83, 105 |
| abstract_inverted_index.point, | 103 |
| abstract_inverted_index.sample | 138 |
| abstract_inverted_index.K-means | 94 |
| abstract_inverted_index.changes | 174 |
| abstract_inverted_index.effects | 10 |
| abstract_inverted_index.enhance | 32 |
| abstract_inverted_index.numbers | 39 |
| abstract_inverted_index.realism | 33 |
| abstract_inverted_index.testing | 93 |
| abstract_inverted_index.unknown | 27 |
| abstract_inverted_index.captured | 19 |
| abstract_inverted_index.estimate | 64 |
| abstract_inverted_index.followed | 56 |
| abstract_inverted_index.presence | 167 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.suggests | 165 |
| abstract_inverted_index.together | 80 |
| abstract_inverted_index.algorithm | 95 |
| abstract_inverted_index.considers | 2 |
| abstract_inverted_index.correctly | 116 |
| abstract_inverted_index.different | 38, 43 |
| abstract_inverted_index.empirical | 146 |
| abstract_inverted_index.estimated | 115 |
| abstract_inverted_index.excellent | 136 |
| abstract_inverted_index.Asymptotic | 121 |
| abstract_inverted_index.algorithm. | 144 |
| abstract_inverted_index.estimation | 55, 143 |
| abstract_inverted_index.estimators | 125 |
| abstract_inverted_index.individual | 13 |
| abstract_inverted_index.sequential | 92 |
| abstract_inverted_index.structural | 28, 170 |
| abstract_inverted_index.structures | 24, 79 |
| abstract_inverted_index.unobserved | 12 |
| abstract_inverted_index.Statistical | 156 |
| abstract_inverted_index.application | 147 |
| abstract_inverted_index.approaching | 119 |
| abstract_inverted_index.column-wise | 60 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.interactive | 8 |
| abstract_inverted_index.membership. | 177 |
| abstract_inverted_index.memberships | 45, 111 |
| abstract_inverted_index.performance | 139 |
| abstract_inverted_index.preliminary | 53 |
| abstract_inverted_index.probability | 118 |
| abstract_inverted_index.simulations | 134 |
| abstract_inverted_index.Metropolitan | 155 |
| abstract_inverted_index.coefficients | 129 |
| abstract_inverted_index.established. | 131 |
| abstract_inverted_index.regressions, | 62 |
| abstract_inverted_index.segmentation | 74 |
| abstract_inverted_index.distributions | 122 |
| abstract_inverted_index.respectively. | 30 |
| abstract_inverted_index.heterogeneities | 16 |
| abstract_inverted_index.simultaneously. | 96 |
| abstract_inverted_index.nuclear-norm-regularized | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |