Parallel I/O Evaluation Techniques and Emerging HPC Workloads: A Perspective Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/cluster48925.2021.00100
Emerging workloads such as artificial intelligence, big data analytics and complex multi-step workflows alongside future exascale applications are anticipated future HPC workloads, which will result in a more diverse I/O system workload and even less predictable I/O behavior and access patterns. Along with the ever increasing gap between the compute and storage performance capabilities, the in-depth understanding of extreme-scale I/O behavior and the I/O performance modeling and prediction are essential tools of the large-scale I/O evaluation process for addressing the needs of extreme-scale hybrid workloads. In this survey article, we focus on the state-of-the-art of the I/O behavior and performance analysis process for HPC systems in a 5-year time window and identify future research challenges.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/cluster48925.2021.00100
- OA Status
- green
- Cited By
- 22
- References
- 81
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3206719874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3206719874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/cluster48925.2021.00100Digital Object Identifier
- Title
-
Parallel I/O Evaluation Techniques and Emerging HPC Workloads: A PerspectiveWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-01Full publication date if available
- Authors
-
Sarah Neuwirth, Arnab K. PaulList of authors in order
- Landing page
-
https://doi.org/10.1109/cluster48925.2021.00100Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1973311Direct OA link when available
- Concepts
-
Computer science, Big data, Workload, Workflow, Analytics, Process (computing), Supercomputer, Perspective (graphical), Data science, Scale (ratio), Focus (optics), Distributed computing, Operating system, Database, Artificial intelligence, Optics, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 8, 2023: 8, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
81Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3206719874 |
|---|---|
| doi | https://doi.org/10.1109/cluster48925.2021.00100 |
| ids.doi | https://doi.org/10.1109/cluster48925.2021.00100 |
| ids.mag | 3206719874 |
| ids.openalex | https://openalex.org/W3206719874 |
| fwci | 3.14700336 |
| type | article |
| title | Parallel I/O Evaluation Techniques and Emerging HPC Workloads: A Perspective |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 679 |
| biblio.first_page | 671 |
| topics[0].id | https://openalex.org/T11181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Advanced Data Storage Technologies |
| topics[1].id | https://openalex.org/T10715 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed and Parallel Computing Systems |
| topics[2].id | https://openalex.org/T11986 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9825999736785889 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1802 |
| topics[2].subfield.display_name | Information Systems and Management |
| topics[2].display_name | Scientific Computing and Data Management |
| funders[0].id | https://openalex.org/F4320306250 |
| funders[0].ror | https://ror.org/01h5tnr73 |
| funders[0].display_name | Battelle |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8009864687919617 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C75684735 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6625116467475891 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[1].display_name | Big data |
| concepts[2].id | https://openalex.org/C2778476105 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6413449048995972 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q628539 |
| concepts[2].display_name | Workload |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6312645077705383 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C79158427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5419531464576721 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[4].display_name | Analytics |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5342814922332764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C83283714 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5166507363319397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q121117 |
| concepts[6].display_name | Supercomputer |
| concepts[7].id | https://openalex.org/C12713177 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5092069506645203 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[7].display_name | Perspective (graphical) |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5057964324951172 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C2778755073 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4811474084854126 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[9].display_name | Scale (ratio) |
| concepts[10].id | https://openalex.org/C192209626 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47257864475250244 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[10].display_name | Focus (optics) |
| concepts[11].id | https://openalex.org/C120314980 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3646469712257385 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[11].display_name | Distributed computing |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.26355260610580444 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C77088390 |
| concepts[13].level | 1 |
| concepts[13].score | 0.25055158138275146 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[13].display_name | Database |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.13799631595611572 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8009864687919617 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/big-data |
| keywords[1].score | 0.6625116467475891 |
| keywords[1].display_name | Big data |
| keywords[2].id | https://openalex.org/keywords/workload |
| keywords[2].score | 0.6413449048995972 |
| keywords[2].display_name | Workload |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.6312645077705383 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/analytics |
| keywords[4].score | 0.5419531464576721 |
| keywords[4].display_name | Analytics |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5342814922332764 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/supercomputer |
| keywords[6].score | 0.5166507363319397 |
| keywords[6].display_name | Supercomputer |
| keywords[7].id | https://openalex.org/keywords/perspective |
| keywords[7].score | 0.5092069506645203 |
| keywords[7].display_name | Perspective (graphical) |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.5057964324951172 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/scale |
| keywords[9].score | 0.4811474084854126 |
| keywords[9].display_name | Scale (ratio) |
| keywords[10].id | https://openalex.org/keywords/focus |
| keywords[10].score | 0.47257864475250244 |
| keywords[10].display_name | Focus (optics) |
| keywords[11].id | https://openalex.org/keywords/distributed-computing |
| keywords[11].score | 0.3646469712257385 |
| keywords[11].display_name | Distributed computing |
| keywords[12].id | https://openalex.org/keywords/operating-system |
| keywords[12].score | 0.26355260610580444 |
| keywords[12].display_name | Operating system |
| keywords[13].id | https://openalex.org/keywords/database |
| keywords[13].score | 0.25055158138275146 |
| keywords[13].display_name | Database |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.13799631595611572 |
| keywords[14].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/cluster48925.2021.00100 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE International Conference on Cluster Computing (CLUSTER) |
| locations[0].landing_page_url | https://doi.org/10.1109/cluster48925.2021.00100 |
| locations[1].id | pmh:oai:osti.gov:1973311 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1973311 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5048928979 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7409-153X |
| authorships[0].author.display_name | Sarah Neuwirth |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114090438 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Computer Science, Goethe-University Frankfurt, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I114090438 |
| authorships[0].institutions[0].ror | https://ror.org/04cvxnb49 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114090438 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Goethe University Frankfurt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sarah Neuwirth |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Computer Science, Goethe-University Frankfurt, Germany |
| authorships[1].author.id | https://openalex.org/A5009265929 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3694-5511 |
| authorships[1].author.display_name | Arnab K. Paul |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[1].affiliations[0].raw_affiliation_string | National Center for Computational Sciences, Oak Ridge National Laboratory, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[1].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Arnab K. Paul |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Center for Computational Sciences, Oak Ridge National Laboratory, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1973311 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parallel I/O Evaluation Techniques and Emerging HPC Workloads: A Perspective |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Advanced Data Storage Technologies |
| related_works | https://openalex.org/W2384867379, https://openalex.org/W3214280620, https://openalex.org/W2329539859, https://openalex.org/W3191490922, https://openalex.org/W2227905990, https://openalex.org/W2765823764, https://openalex.org/W2079244304, https://openalex.org/W2794038527, https://openalex.org/W2463183163, https://openalex.org/W2019038080 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1973311 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1973311 |
| primary_location.id | doi:10.1109/cluster48925.2021.00100 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE International Conference on Cluster Computing (CLUSTER) |
| primary_location.landing_page_url | https://doi.org/10.1109/cluster48925.2021.00100 |
| publication_date | 2021-09-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2587995914, https://openalex.org/W2778417717, https://openalex.org/W2963304552, https://openalex.org/W2294929133, https://openalex.org/W3172522318, https://openalex.org/W2338973660, https://openalex.org/W2883357548, https://openalex.org/W2086748522, https://openalex.org/W3086154835, https://openalex.org/W2983819714, https://openalex.org/W2611060033, https://openalex.org/W4206038948, https://openalex.org/W2039546699, https://openalex.org/W2967439604, https://openalex.org/W2793449904, https://openalex.org/W1563664376, https://openalex.org/W2906314214, https://openalex.org/W2088219312, https://openalex.org/W2963116985, https://openalex.org/W2987372983, https://openalex.org/W2766693089, https://openalex.org/W2584983941, https://openalex.org/W2488477570, https://openalex.org/W2783550104, https://openalex.org/W2294085793, https://openalex.org/W2010628428, https://openalex.org/W2615801313, https://openalex.org/W3048540677, https://openalex.org/W6758107218, https://openalex.org/W3046624992, https://openalex.org/W2073567808, https://openalex.org/W2631751282, https://openalex.org/W2803466590, https://openalex.org/W1974534679, https://openalex.org/W3123929972, https://openalex.org/W2999925821, https://openalex.org/W6731297417, https://openalex.org/W2507101165, https://openalex.org/W3159974995, https://openalex.org/W2985168981, https://openalex.org/W2293392140, https://openalex.org/W2522237205, https://openalex.org/W1775690505, https://openalex.org/W2264615170, https://openalex.org/W4255274166, https://openalex.org/W6737624493, https://openalex.org/W2759019234, https://openalex.org/W2896639624, https://openalex.org/W2259683994, https://openalex.org/W2556838679, https://openalex.org/W6736549913, https://openalex.org/W2778288116, https://openalex.org/W3169404295, https://openalex.org/W6782788207, https://openalex.org/W2791065940, https://openalex.org/W2282963973, https://openalex.org/W2106956101, https://openalex.org/W2899477092, https://openalex.org/W2971445767, https://openalex.org/W6759947718, https://openalex.org/W2903745441, https://openalex.org/W2902431547, https://openalex.org/W6756631802, https://openalex.org/W2725626595, https://openalex.org/W2766914978, https://openalex.org/W2963946443, https://openalex.org/W2909303936, https://openalex.org/W3085234394, https://openalex.org/W2560994485, https://openalex.org/W2901824939, https://openalex.org/W2566699981, https://openalex.org/W2767338985, https://openalex.org/W2566279479, https://openalex.org/W2012343857, https://openalex.org/W2919191672, https://openalex.org/W2919835889, https://openalex.org/W3096461912, https://openalex.org/W2612256363, https://openalex.org/W2186615578, https://openalex.org/W2605367768, https://openalex.org/W4301901185 |
| referenced_works_count | 81 |
| abstract_inverted_index.a | 26, 106 |
| abstract_inverted_index.In | 85 |
| abstract_inverted_index.as | 3 |
| abstract_inverted_index.in | 25, 105 |
| abstract_inverted_index.of | 57, 71, 81, 94 |
| abstract_inverted_index.on | 91 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.HPC | 20, 103 |
| abstract_inverted_index.I/O | 29, 36, 59, 63, 74, 96 |
| abstract_inverted_index.and | 9, 32, 38, 50, 61, 66, 98, 110 |
| abstract_inverted_index.are | 17, 68 |
| abstract_inverted_index.big | 6 |
| abstract_inverted_index.for | 77, 102 |
| abstract_inverted_index.gap | 46 |
| abstract_inverted_index.the | 43, 48, 54, 62, 72, 79, 92, 95 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.even | 33 |
| abstract_inverted_index.ever | 44 |
| abstract_inverted_index.less | 34 |
| abstract_inverted_index.more | 27 |
| abstract_inverted_index.such | 2 |
| abstract_inverted_index.this | 86 |
| abstract_inverted_index.time | 108 |
| abstract_inverted_index.will | 23 |
| abstract_inverted_index.with | 42 |
| abstract_inverted_index.Along | 41 |
| abstract_inverted_index.focus | 90 |
| abstract_inverted_index.needs | 80 |
| abstract_inverted_index.tools | 70 |
| abstract_inverted_index.which | 22 |
| abstract_inverted_index.5-year | 107 |
| abstract_inverted_index.access | 39 |
| abstract_inverted_index.future | 14, 19, 112 |
| abstract_inverted_index.hybrid | 83 |
| abstract_inverted_index.result | 24 |
| abstract_inverted_index.survey | 87 |
| abstract_inverted_index.system | 30 |
| abstract_inverted_index.window | 109 |
| abstract_inverted_index.between | 47 |
| abstract_inverted_index.complex | 10 |
| abstract_inverted_index.compute | 49 |
| abstract_inverted_index.diverse | 28 |
| abstract_inverted_index.process | 76, 101 |
| abstract_inverted_index.storage | 51 |
| abstract_inverted_index.systems | 104 |
| abstract_inverted_index.Emerging | 0 |
| abstract_inverted_index.analysis | 100 |
| abstract_inverted_index.article, | 88 |
| abstract_inverted_index.behavior | 37, 60, 97 |
| abstract_inverted_index.exascale | 15 |
| abstract_inverted_index.identify | 111 |
| abstract_inverted_index.in-depth | 55 |
| abstract_inverted_index.modeling | 65 |
| abstract_inverted_index.research | 113 |
| abstract_inverted_index.workload | 31 |
| abstract_inverted_index.alongside | 13 |
| abstract_inverted_index.analytics | 8 |
| abstract_inverted_index.essential | 69 |
| abstract_inverted_index.patterns. | 40 |
| abstract_inverted_index.workflows | 12 |
| abstract_inverted_index.workloads | 1 |
| abstract_inverted_index.addressing | 78 |
| abstract_inverted_index.artificial | 4 |
| abstract_inverted_index.evaluation | 75 |
| abstract_inverted_index.increasing | 45 |
| abstract_inverted_index.multi-step | 11 |
| abstract_inverted_index.prediction | 67 |
| abstract_inverted_index.workloads, | 21 |
| abstract_inverted_index.workloads. | 84 |
| abstract_inverted_index.anticipated | 18 |
| abstract_inverted_index.challenges. | 114 |
| abstract_inverted_index.large-scale | 73 |
| abstract_inverted_index.performance | 52, 64, 99 |
| abstract_inverted_index.predictable | 35 |
| abstract_inverted_index.applications | 16 |
| abstract_inverted_index.capabilities, | 53 |
| abstract_inverted_index.extreme-scale | 58, 82 |
| abstract_inverted_index.intelligence, | 5 |
| abstract_inverted_index.understanding | 56 |
| abstract_inverted_index.state-of-the-art | 93 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.91524034 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |