Parallel repetition of local simultaneous state discrimination Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.06456
Local simultaneous state discrimination (LSSD) is a recently introduced problem in quantum information processing. Its classical version is a non-local game played by non-communicating players against a referee. Based on a known probability distribution, the referee generates one input for each of the players and keeps one secret value. The players have to guess the referee's value and win if they all do so. For this game, we investigate the advantage of no-signalling strategies over classical ones. We show numerically that for three players and binary values, no-signalling strategies cannot provide any improvement over classical ones. For a certain LSSD game based on a binary symmetric channel, we show that no-signalling strategies are strictly better when multiple simultaneous instances of the game are played. Good classical strategies for this game can be defined by codes, and good no-signalling strategies by list-decoding schemes. We expand this example game to a class of games defined by an arbitrary channel, and extend the idea of using codes and list decoding to define strategies for multiple simultaneous instances of these games. Finally, we give an expression for the limit of the exponent of the classical winning probability, and show that no-signalling strategies based on list-decoding schemes achieve this limit.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.06456
- https://arxiv.org/pdf/2211.06456
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309128842
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309128842Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.06456Digital Object Identifier
- Title
-
Parallel repetition of local simultaneous state discriminationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-11Full publication date if available
- Authors
-
Llorenç Escolà Farràs, Jaròn Has, Māris Ozols, Christian Schaffner, Mehrdad TahmasbiList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.06456Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.06456Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.06456Direct OA link when available
- Concepts
-
Decoding methods, Limit (mathematics), Computer science, Binary number, Sequential game, Channel (broadcasting), Signalling, State (computer science), Theoretical computer science, Value (mathematics), Class (philosophy), Game theory, Mathematics, Mathematical economics, Algorithm, Artificial intelligence, Arithmetic, Telecommunications, Machine learning, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309128842 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.06456 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.06456 |
| ids.openalex | https://openalex.org/W4309128842 |
| fwci | 0.0 |
| type | preprint |
| title | Parallel repetition of local simultaneous state discrimination |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10020 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Quantum Information and Cryptography |
| topics[1].id | https://openalex.org/T10682 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Quantum Computing Algorithms and Architecture |
| topics[2].id | https://openalex.org/T10622 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9807999730110168 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Quantum Mechanics and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C57273362 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7271669507026672 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[0].display_name | Decoding methods |
| concepts[1].id | https://openalex.org/C151201525 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6545534133911133 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[1].display_name | Limit (mathematics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.596642017364502 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C48372109 |
| concepts[3].level | 2 |
| concepts[3].score | 0.538230299949646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[3].display_name | Binary number |
| concepts[4].id | https://openalex.org/C73795354 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4945954978466034 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q287618 |
| concepts[4].display_name | Sequential game |
| concepts[5].id | https://openalex.org/C127162648 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4936557710170746 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[5].display_name | Channel (broadcasting) |
| concepts[6].id | https://openalex.org/C39743133 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4883439242839813 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3262595 |
| concepts[6].display_name | Signalling |
| concepts[7].id | https://openalex.org/C48103436 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4645651876926422 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[7].display_name | State (computer science) |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4547632336616516 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C2776291640 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4531637728214264 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[9].display_name | Value (mathematics) |
| concepts[10].id | https://openalex.org/C2777212361 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45094892382621765 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[10].display_name | Class (philosophy) |
| concepts[11].id | https://openalex.org/C177142836 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38261350989341736 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q44455 |
| concepts[11].display_name | Game theory |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.37516844272613525 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C144237770 |
| concepts[13].level | 1 |
| concepts[13].score | 0.34531867504119873 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[13].display_name | Mathematical economics |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3138572871685028 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2155388593673706 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C94375191 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1404363512992859 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[16].display_name | Arithmetic |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13034507632255554 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C119857082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[18].display_name | Machine learning |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/decoding-methods |
| keywords[0].score | 0.7271669507026672 |
| keywords[0].display_name | Decoding methods |
| keywords[1].id | https://openalex.org/keywords/limit |
| keywords[1].score | 0.6545534133911133 |
| keywords[1].display_name | Limit (mathematics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.596642017364502 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/binary-number |
| keywords[3].score | 0.538230299949646 |
| keywords[3].display_name | Binary number |
| keywords[4].id | https://openalex.org/keywords/sequential-game |
| keywords[4].score | 0.4945954978466034 |
| keywords[4].display_name | Sequential game |
| keywords[5].id | https://openalex.org/keywords/channel |
| keywords[5].score | 0.4936557710170746 |
| keywords[5].display_name | Channel (broadcasting) |
| keywords[6].id | https://openalex.org/keywords/signalling |
| keywords[6].score | 0.4883439242839813 |
| keywords[6].display_name | Signalling |
| keywords[7].id | https://openalex.org/keywords/state |
| keywords[7].score | 0.4645651876926422 |
| keywords[7].display_name | State (computer science) |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.4547632336616516 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/value |
| keywords[9].score | 0.4531637728214264 |
| keywords[9].display_name | Value (mathematics) |
| keywords[10].id | https://openalex.org/keywords/class |
| keywords[10].score | 0.45094892382621765 |
| keywords[10].display_name | Class (philosophy) |
| keywords[11].id | https://openalex.org/keywords/game-theory |
| keywords[11].score | 0.38261350989341736 |
| keywords[11].display_name | Game theory |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.37516844272613525 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/mathematical-economics |
| keywords[13].score | 0.34531867504119873 |
| keywords[13].display_name | Mathematical economics |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.3138572871685028 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2155388593673706 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/arithmetic |
| keywords[16].score | 0.1404363512992859 |
| keywords[16].display_name | Arithmetic |
| keywords[17].id | https://openalex.org/keywords/telecommunications |
| keywords[17].score | 0.13034507632255554 |
| keywords[17].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.06456 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.06456 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.06456 |
| locations[1].id | doi:10.48550/arxiv.2211.06456 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.06456 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047598054 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Llorenç Escolà Farràs |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farràs, Llorenç Escolà |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038343425 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jaròn Has |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Has, Jaròn |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5073487293 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3238-8594 |
| authorships[2].author.display_name | Māris Ozols |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ozols, Maris |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5043556770 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1754-1415 |
| authorships[3].author.display_name | Christian Schaffner |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Schaffner, Christian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086851662 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2985-497X |
| authorships[4].author.display_name | Mehrdad Tahmasbi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tahmasbi, Mehrdad |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.06456 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-23T00:00:00 |
| display_name | Parallel repetition of local simultaneous state discrimination |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10020 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Quantum Information and Cryptography |
| related_works | https://openalex.org/W2071306797, https://openalex.org/W2405803446, https://openalex.org/W2374666693, https://openalex.org/W2911145752, https://openalex.org/W1987421962, https://openalex.org/W2149560990, https://openalex.org/W2372443802, https://openalex.org/W2363987469, https://openalex.org/W1517532457, https://openalex.org/W2124372900 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.06456 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.06456 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.06456 |
| primary_location.id | pmh:oai:arXiv.org:2211.06456 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.06456 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.06456 |
| publication_date | 2022-11-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 18, 26, 30, 97, 103, 148 |
| abstract_inverted_index.We | 77, 142 |
| abstract_inverted_index.an | 154, 180 |
| abstract_inverted_index.be | 131 |
| abstract_inverted_index.by | 22, 133, 139, 153 |
| abstract_inverted_index.do | 62 |
| abstract_inverted_index.if | 59 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 5, 17 |
| abstract_inverted_index.of | 41, 71, 119, 150, 161, 174, 185, 188 |
| abstract_inverted_index.on | 29, 102, 199 |
| abstract_inverted_index.to | 52, 147, 167 |
| abstract_inverted_index.we | 67, 107, 178 |
| abstract_inverted_index.For | 64, 96 |
| abstract_inverted_index.Its | 14 |
| abstract_inverted_index.The | 49 |
| abstract_inverted_index.all | 61 |
| abstract_inverted_index.and | 44, 57, 84, 135, 157, 164, 193 |
| abstract_inverted_index.any | 91 |
| abstract_inverted_index.are | 112, 122 |
| abstract_inverted_index.can | 130 |
| abstract_inverted_index.for | 39, 81, 127, 170, 182 |
| abstract_inverted_index.one | 37, 46 |
| abstract_inverted_index.so. | 63 |
| abstract_inverted_index.the | 34, 42, 54, 69, 120, 159, 183, 186, 189 |
| abstract_inverted_index.win | 58 |
| abstract_inverted_index.Good | 124 |
| abstract_inverted_index.LSSD | 99 |
| abstract_inverted_index.each | 40 |
| abstract_inverted_index.game | 20, 100, 121, 129, 146 |
| abstract_inverted_index.give | 179 |
| abstract_inverted_index.good | 136 |
| abstract_inverted_index.have | 51 |
| abstract_inverted_index.idea | 160 |
| abstract_inverted_index.list | 165 |
| abstract_inverted_index.over | 74, 93 |
| abstract_inverted_index.show | 78, 108, 194 |
| abstract_inverted_index.that | 80, 109, 195 |
| abstract_inverted_index.they | 60 |
| abstract_inverted_index.this | 65, 128, 144, 203 |
| abstract_inverted_index.when | 115 |
| abstract_inverted_index.Based | 28 |
| abstract_inverted_index.Local | 0 |
| abstract_inverted_index.based | 101, 198 |
| abstract_inverted_index.class | 149 |
| abstract_inverted_index.codes | 163 |
| abstract_inverted_index.game, | 66 |
| abstract_inverted_index.games | 151 |
| abstract_inverted_index.guess | 53 |
| abstract_inverted_index.input | 38 |
| abstract_inverted_index.keeps | 45 |
| abstract_inverted_index.known | 31 |
| abstract_inverted_index.limit | 184 |
| abstract_inverted_index.ones. | 76, 95 |
| abstract_inverted_index.state | 2 |
| abstract_inverted_index.these | 175 |
| abstract_inverted_index.three | 82 |
| abstract_inverted_index.using | 162 |
| abstract_inverted_index.value | 56 |
| abstract_inverted_index.(LSSD) | 4 |
| abstract_inverted_index.better | 114 |
| abstract_inverted_index.binary | 85, 104 |
| abstract_inverted_index.cannot | 89 |
| abstract_inverted_index.codes, | 134 |
| abstract_inverted_index.define | 168 |
| abstract_inverted_index.expand | 143 |
| abstract_inverted_index.extend | 158 |
| abstract_inverted_index.games. | 176 |
| abstract_inverted_index.limit. | 204 |
| abstract_inverted_index.played | 21 |
| abstract_inverted_index.secret | 47 |
| abstract_inverted_index.value. | 48 |
| abstract_inverted_index.achieve | 202 |
| abstract_inverted_index.against | 25 |
| abstract_inverted_index.certain | 98 |
| abstract_inverted_index.defined | 132, 152 |
| abstract_inverted_index.example | 145 |
| abstract_inverted_index.played. | 123 |
| abstract_inverted_index.players | 24, 43, 50, 83 |
| abstract_inverted_index.problem | 9 |
| abstract_inverted_index.provide | 90 |
| abstract_inverted_index.quantum | 11 |
| abstract_inverted_index.referee | 35 |
| abstract_inverted_index.schemes | 201 |
| abstract_inverted_index.values, | 86 |
| abstract_inverted_index.version | 16 |
| abstract_inverted_index.winning | 191 |
| abstract_inverted_index.Finally, | 177 |
| abstract_inverted_index.channel, | 106, 156 |
| abstract_inverted_index.decoding | 166 |
| abstract_inverted_index.exponent | 187 |
| abstract_inverted_index.multiple | 116, 171 |
| abstract_inverted_index.recently | 7 |
| abstract_inverted_index.referee. | 27 |
| abstract_inverted_index.schemes. | 141 |
| abstract_inverted_index.strictly | 113 |
| abstract_inverted_index.advantage | 70 |
| abstract_inverted_index.arbitrary | 155 |
| abstract_inverted_index.classical | 15, 75, 94, 125, 190 |
| abstract_inverted_index.generates | 36 |
| abstract_inverted_index.instances | 118, 173 |
| abstract_inverted_index.non-local | 19 |
| abstract_inverted_index.referee's | 55 |
| abstract_inverted_index.symmetric | 105 |
| abstract_inverted_index.expression | 181 |
| abstract_inverted_index.introduced | 8 |
| abstract_inverted_index.strategies | 73, 88, 111, 126, 138, 169, 197 |
| abstract_inverted_index.improvement | 92 |
| abstract_inverted_index.information | 12 |
| abstract_inverted_index.investigate | 68 |
| abstract_inverted_index.numerically | 79 |
| abstract_inverted_index.probability | 32 |
| abstract_inverted_index.processing. | 13 |
| abstract_inverted_index.probability, | 192 |
| abstract_inverted_index.simultaneous | 1, 117, 172 |
| abstract_inverted_index.distribution, | 33 |
| abstract_inverted_index.list-decoding | 140, 200 |
| abstract_inverted_index.no-signalling | 72, 87, 110, 137, 196 |
| abstract_inverted_index.discrimination | 3 |
| abstract_inverted_index.non-communicating | 23 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[1].score | 0.46000000834465027 |
| sustainable_development_goals[1].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.13676934 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |