Parameter-efficient fine-tuning on large protein language models improves signal peptide prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/gr.279132.124
Signal peptides (SPs) play a crucial role in protein translocation in cells. The development of large protein language models (PLMs) and prompt-based learning provide a new opportunity for SP prediction, especially for the categories with limited annotated data. We present a parameter-efficient fine-tuning (PEFT) framework for SP prediction, PEFT-SP, to effectively utilize pretrained PLMs. We integrated low-rank adaptation (LoRA) into ESM-2 models to better leverage the protein sequence evolutionary knowledge of PLMs. Experiments show that PEFT-SP using LoRA enhances state-of-the-art results, leading to a maximum Matthews correlation coefficient (MCC) gain of 87.3% for SPs with small training samples and an overall MCC gain of 6.1%. Furthermore, we also employed two other PEFT methods, prompt tuning and adapter tuning, in ESM-2 for SP prediction. More elaborate experiments show that PEFT-SP using adapter tuning can also improve the state-of-the-art results by up to 28.1% MCC gain for SPs with small training samples and an overall MCC gain of 3.8%. LoRA requires fewer computing resources and less memory than the adapter tuning during the training stage, making it possible to adapt larger and more powerful protein models for SP prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1101/gr.279132.124
- OA Status
- green
- Cited By
- 22
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401021891
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401021891Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/gr.279132.124Digital Object Identifier
- Title
-
Parameter-efficient fine-tuning on large protein language models improves signal peptide predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-26Full publication date if available
- Authors
-
Shuai Zeng, Duolin Wang, Lei Jiang, Dong XuList of authors in order
- Landing page
-
https://doi.org/10.1101/gr.279132.124Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11529868Direct OA link when available
- Concepts
-
Adapter (computing), Leverage (statistics), Biology, Computer science, Artificial intelligence, Machine learning, Computational biology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401021891 |
|---|---|
| doi | https://doi.org/10.1101/gr.279132.124 |
| ids.doi | https://doi.org/10.1101/gr.279132.124 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39060029 |
| ids.openalex | https://openalex.org/W4401021891 |
| fwci | 10.56543895 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D021382 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Protein Sorting Signals |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D019295 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Computational Biology |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | Q000378 |
| mesh[4].descriptor_ui | D011506 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | metabolism |
| mesh[4].descriptor_name | Proteins |
| mesh[5].qualifier_ui | Q000737 |
| mesh[5].descriptor_ui | D011506 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | chemistry |
| mesh[5].descriptor_name | Proteins |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D021382 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Protein Sorting Signals |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D019295 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Computational Biology |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000378 |
| mesh[10].descriptor_ui | D011506 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | metabolism |
| mesh[10].descriptor_name | Proteins |
| mesh[11].qualifier_ui | Q000737 |
| mesh[11].descriptor_ui | D011506 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | chemistry |
| mesh[11].descriptor_name | Proteins |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D021382 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Protein Sorting Signals |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D019295 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Computational Biology |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | Q000378 |
| mesh[16].descriptor_ui | D011506 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | metabolism |
| mesh[16].descriptor_name | Proteins |
| mesh[17].qualifier_ui | Q000737 |
| mesh[17].descriptor_ui | D011506 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | chemistry |
| mesh[17].descriptor_name | Proteins |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D021382 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Protein Sorting Signals |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D019295 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Computational Biology |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000465 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Algorithms |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006801 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Humans |
| mesh[22].qualifier_ui | Q000378 |
| mesh[22].descriptor_ui | D011506 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | metabolism |
| mesh[22].descriptor_name | Proteins |
| mesh[23].qualifier_ui | Q000737 |
| mesh[23].descriptor_ui | D011506 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | chemistry |
| mesh[23].descriptor_name | Proteins |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D021382 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Protein Sorting Signals |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D019295 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Computational Biology |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000465 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Algorithms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D006801 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Humans |
| mesh[28].qualifier_ui | Q000378 |
| mesh[28].descriptor_ui | D011506 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | metabolism |
| mesh[28].descriptor_name | Proteins |
| mesh[29].qualifier_ui | Q000737 |
| mesh[29].descriptor_ui | D011506 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | chemistry |
| mesh[29].descriptor_name | Proteins |
| type | article |
| title | Parameter-efficient fine-tuning on large protein language models improves signal peptide prediction |
| awards[0].id | https://openalex.org/G7058772554 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DBI-2145226 |
| awards[0].funder_display_name | National Science Foundation |
| awards[1].id | https://openalex.org/G7975266290 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | R35-GM126985 |
| awards[1].funder_display_name | National Institutes of Health |
| biblio.issue | 9 |
| biblio.volume | 34 |
| biblio.last_page | 1454 |
| biblio.first_page | 1445 |
| topics[0].id | https://openalex.org/T12254 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Machine Learning in Bioinformatics |
| topics[1].id | https://openalex.org/T10521 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | RNA and protein synthesis mechanisms |
| topics[2].id | https://openalex.org/T11103 |
| topics[2].field.id | https://openalex.org/fields/24 |
| topics[2].field.display_name | Immunology and Microbiology |
| topics[2].score | 0.9994999766349792 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2404 |
| topics[2].subfield.display_name | Microbiology |
| topics[2].display_name | Antimicrobial Peptides and Activities |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177284502 |
| concepts[0].level | 2 |
| concepts[0].score | 0.858977198600769 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1005390 |
| concepts[0].display_name | Adapter (computing) |
| concepts[1].id | https://openalex.org/C153083717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7831236124038696 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[1].display_name | Leverage (statistics) |
| concepts[2].id | https://openalex.org/C86803240 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5719160437583923 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[2].display_name | Biology |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5082197189331055 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4015713930130005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3762222230434418 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C70721500 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3358677923679352 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[6].display_name | Computational biology |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/adapter |
| keywords[0].score | 0.858977198600769 |
| keywords[0].display_name | Adapter (computing) |
| keywords[1].id | https://openalex.org/keywords/leverage |
| keywords[1].score | 0.7831236124038696 |
| keywords[1].display_name | Leverage (statistics) |
| keywords[2].id | https://openalex.org/keywords/biology |
| keywords[2].score | 0.5719160437583923 |
| keywords[2].display_name | Biology |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5082197189331055 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4015713930130005 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3762222230434418 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/computational-biology |
| keywords[6].score | 0.3358677923679352 |
| keywords[6].display_name | Computational biology |
| language | en |
| locations[0].id | doi:10.1101/gr.279132.124 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S43092948 |
| locations[0].source.issn | 1088-9051, 1549-5469 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1088-9051 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Genome Research |
| locations[0].source.host_organization | https://openalex.org/P4310315909 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315909 |
| locations[0].source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Genome Research |
| locations[0].landing_page_url | https://doi.org/10.1101/gr.279132.124 |
| locations[1].id | pmid:39060029 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Genome research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39060029 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11529868 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Genome Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11529868 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5103082007 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7632-427X |
| authorships[0].author.display_name | Shuai Zeng |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Missouri |
| authorships[0].institutions[0].id | https://openalex.org/I76835614 |
| authorships[0].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Missouri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuai Zeng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Missouri |
| authorships[1].author.id | https://openalex.org/A5003943520 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1649-460X |
| authorships[1].author.display_name | Duolin Wang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Missouri |
| authorships[1].institutions[0].id | https://openalex.org/I76835614 |
| authorships[1].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Missouri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Duolin Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Missouri |
| authorships[2].author.id | https://openalex.org/A5089379689 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4579-728X |
| authorships[2].author.display_name | Lei Jiang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Missouri |
| authorships[2].institutions[0].id | https://openalex.org/I76835614 |
| authorships[2].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Missouri |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lei Jiang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Missouri |
| authorships[3].author.id | https://openalex.org/A5082428303 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4809-0514 |
| authorships[3].author.display_name | Dong Xu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Missouri |
| authorships[3].institutions[0].id | https://openalex.org/I76835614 |
| authorships[3].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Missouri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dong Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Missouri |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11529868 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parameter-efficient fine-tuning on large protein language models improves signal peptide prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12254 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Machine Learning in Bioinformatics |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11529868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Genome Res |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11529868 |
| primary_location.id | doi:10.1101/gr.279132.124 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S43092948 |
| primary_location.source.issn | 1088-9051, 1549-5469 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1088-9051 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Genome Research |
| primary_location.source.host_organization | https://openalex.org/P4310315909 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315909 |
| primary_location.source.host_organization_lineage_names | Cold Spring Harbor Laboratory Press |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Genome Research |
| primary_location.landing_page_url | https://doi.org/10.1101/gr.279132.124 |
| publication_date | 2024-07-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2792643794, https://openalex.org/W2949676527, https://openalex.org/W2912990441, https://openalex.org/W2006201402, https://openalex.org/W2123186393, https://openalex.org/W2164751980, https://openalex.org/W2161746138, https://openalex.org/W1935158889, https://openalex.org/W4386978016, https://openalex.org/W2020969907, https://openalex.org/W2004406780, https://openalex.org/W2171709077, https://openalex.org/W3177500196, https://openalex.org/W2164186284, https://openalex.org/W2802730096, https://openalex.org/W2047298552, https://openalex.org/W3176693010, https://openalex.org/W2126975650, https://openalex.org/W3129049721, https://openalex.org/W1971147414, https://openalex.org/W2124088653, https://openalex.org/W2560647685, https://openalex.org/W4205991051, https://openalex.org/W3174770825, https://openalex.org/W4327550249, https://openalex.org/W4285247752, https://openalex.org/W3179485843, https://openalex.org/W2171091522, https://openalex.org/W2809247618, https://openalex.org/W2061385538, https://openalex.org/W3001338162, https://openalex.org/W2094201044, https://openalex.org/W1965154000, https://openalex.org/W2164025376, https://openalex.org/W3146944767, https://openalex.org/W2776525063, https://openalex.org/W2076048958, https://openalex.org/W2102461176, https://openalex.org/W4205192056, https://openalex.org/W2060300932, https://openalex.org/W2737196618, https://openalex.org/W2600277188, https://openalex.org/W4361229539, https://openalex.org/W3211728297, https://openalex.org/W4206950245 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 4, 24, 40, 83 |
| abstract_inverted_index.SP | 28, 46, 121, 185 |
| abstract_inverted_index.We | 38, 54 |
| abstract_inverted_index.an | 99, 151 |
| abstract_inverted_index.by | 138 |
| abstract_inverted_index.in | 7, 10, 118 |
| abstract_inverted_index.it | 174 |
| abstract_inverted_index.of | 14, 70, 90, 103, 155 |
| abstract_inverted_index.to | 49, 62, 82, 140, 176 |
| abstract_inverted_index.up | 139 |
| abstract_inverted_index.we | 106 |
| abstract_inverted_index.MCC | 101, 142, 153 |
| abstract_inverted_index.SPs | 93, 145 |
| abstract_inverted_index.The | 12 |
| abstract_inverted_index.and | 20, 98, 115, 150, 162, 179 |
| abstract_inverted_index.can | 132 |
| abstract_inverted_index.for | 27, 31, 45, 92, 120, 144, 184 |
| abstract_inverted_index.new | 25 |
| abstract_inverted_index.the | 32, 65, 135, 166, 170 |
| abstract_inverted_index.two | 109 |
| abstract_inverted_index.LoRA | 77, 157 |
| abstract_inverted_index.More | 123 |
| abstract_inverted_index.PEFT | 111 |
| abstract_inverted_index.also | 107, 133 |
| abstract_inverted_index.gain | 89, 102, 143, 154 |
| abstract_inverted_index.into | 59 |
| abstract_inverted_index.less | 163 |
| abstract_inverted_index.more | 180 |
| abstract_inverted_index.play | 3 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.show | 73, 126 |
| abstract_inverted_index.than | 165 |
| abstract_inverted_index.that | 74, 127 |
| abstract_inverted_index.with | 34, 94, 146 |
| abstract_inverted_index.(MCC) | 88 |
| abstract_inverted_index.(SPs) | 2 |
| abstract_inverted_index.28.1% | 141 |
| abstract_inverted_index.3.8%. | 156 |
| abstract_inverted_index.6.1%. | 104 |
| abstract_inverted_index.87.3% | 91 |
| abstract_inverted_index.ESM-2 | 60, 119 |
| abstract_inverted_index.PLMs. | 53, 71 |
| abstract_inverted_index.adapt | 177 |
| abstract_inverted_index.data. | 37 |
| abstract_inverted_index.fewer | 159 |
| abstract_inverted_index.large | 15 |
| abstract_inverted_index.other | 110 |
| abstract_inverted_index.small | 95, 147 |
| abstract_inverted_index.using | 76, 129 |
| abstract_inverted_index.(LoRA) | 58 |
| abstract_inverted_index.(PEFT) | 43 |
| abstract_inverted_index.(PLMs) | 19 |
| abstract_inverted_index.Signal | 0 |
| abstract_inverted_index.better | 63 |
| abstract_inverted_index.cells. | 11 |
| abstract_inverted_index.during | 169 |
| abstract_inverted_index.larger | 178 |
| abstract_inverted_index.making | 173 |
| abstract_inverted_index.memory | 164 |
| abstract_inverted_index.models | 18, 61, 183 |
| abstract_inverted_index.prompt | 113 |
| abstract_inverted_index.stage, | 172 |
| abstract_inverted_index.tuning | 114, 131, 168 |
| abstract_inverted_index.PEFT-SP | 75, 128 |
| abstract_inverted_index.adapter | 116, 130, 167 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.improve | 134 |
| abstract_inverted_index.leading | 81 |
| abstract_inverted_index.limited | 35 |
| abstract_inverted_index.maximum | 84 |
| abstract_inverted_index.overall | 100, 152 |
| abstract_inverted_index.present | 39 |
| abstract_inverted_index.protein | 8, 16, 66, 182 |
| abstract_inverted_index.provide | 23 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.samples | 97, 149 |
| abstract_inverted_index.tuning, | 117 |
| abstract_inverted_index.utilize | 51 |
| abstract_inverted_index.Matthews | 85 |
| abstract_inverted_index.PEFT-SP, | 48 |
| abstract_inverted_index.employed | 108 |
| abstract_inverted_index.enhances | 78 |
| abstract_inverted_index.language | 17 |
| abstract_inverted_index.learning | 22 |
| abstract_inverted_index.leverage | 64 |
| abstract_inverted_index.low-rank | 56 |
| abstract_inverted_index.methods, | 112 |
| abstract_inverted_index.peptides | 1 |
| abstract_inverted_index.possible | 175 |
| abstract_inverted_index.powerful | 181 |
| abstract_inverted_index.requires | 158 |
| abstract_inverted_index.results, | 80 |
| abstract_inverted_index.sequence | 67 |
| abstract_inverted_index.training | 96, 148, 171 |
| abstract_inverted_index.annotated | 36 |
| abstract_inverted_index.computing | 160 |
| abstract_inverted_index.elaborate | 124 |
| abstract_inverted_index.framework | 44 |
| abstract_inverted_index.knowledge | 69 |
| abstract_inverted_index.resources | 161 |
| abstract_inverted_index.adaptation | 57 |
| abstract_inverted_index.categories | 33 |
| abstract_inverted_index.especially | 30 |
| abstract_inverted_index.integrated | 55 |
| abstract_inverted_index.pretrained | 52 |
| abstract_inverted_index.Experiments | 72 |
| abstract_inverted_index.coefficient | 87 |
| abstract_inverted_index.correlation | 86 |
| abstract_inverted_index.development | 13 |
| abstract_inverted_index.effectively | 50 |
| abstract_inverted_index.experiments | 125 |
| abstract_inverted_index.fine-tuning | 42 |
| abstract_inverted_index.opportunity | 26 |
| abstract_inverted_index.prediction, | 29, 47 |
| abstract_inverted_index.prediction. | 122, 186 |
| abstract_inverted_index.Furthermore, | 105 |
| abstract_inverted_index.evolutionary | 68 |
| abstract_inverted_index.prompt-based | 21 |
| abstract_inverted_index.translocation | 9 |
| abstract_inverted_index.state-of-the-art | 79, 136 |
| abstract_inverted_index.parameter-efficient | 41 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.97814315 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |