Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1177/1550147718786888
Structural parameters are the most important factors reflecting structural performance and conditions. As a result, their identification becomes the most essential aspect of the structural assessment and damage identification for the structural health monitoring. In this article, a structural parameter identification method based on Monte Carlo method and likelihood estimate is proposed. With which, parameters such as stiffness and damping are identified and studied. Identification effects subjected to three different conditions with no noise, with Gaussian noise, and with non-Gaussian noise are studied and compared. Considering the existence of damage, damage identification is also realized by the identification of the structural parameters. Both simulations and experiments are conducted to verify the proposed method. Results show that structural parameters, as well as the damages, can be well identified. Moreover, the proposed method is much robust to the noises. The proposed method may be prospective for the application of real structural health monitoring.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/1550147718786888
- https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888
- OA Status
- gold
- Cited By
- 6
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2883483718
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2883483718Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/1550147718786888Digital Object Identifier
- Title
-
Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimateWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-07-01Full publication date if available
- Authors
-
Songtao Xue, Bo Wen, Rui Huang, Liyuan Huang, Tadanobu Sato, Liyu Xie, Hesheng Tang, Chunfeng WanList of authors in order
- Landing page
-
https://doi.org/10.1177/1550147718786888Publisher landing page
- PDF URL
-
https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888Direct OA link when available
- Concepts
-
Identification (biology), Structural health monitoring, Monte Carlo method, Computer science, Noise (video), Gaussian, Stiffness, Structural engineering, Statistics, Mathematics, Artificial intelligence, Engineering, Physics, Image (mathematics), Biology, Botany, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2022: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2883483718 |
|---|---|
| doi | https://doi.org/10.1177/1550147718786888 |
| ids.doi | https://doi.org/10.1177/1550147718786888 |
| ids.mag | 2883483718 |
| ids.openalex | https://openalex.org/W2883483718 |
| fwci | 0.46310279 |
| type | article |
| title | Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate |
| awards[0].id | https://openalex.org/G8017630953 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51578140 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 7 |
| biblio.volume | 14 |
| biblio.last_page | 155014771878688 |
| biblio.first_page | 155014771878688 |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T11606 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Maintenance and Monitoring |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7689403295516968 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C2776247918 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7483153343200684 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423713 |
| concepts[1].display_name | Structural health monitoring |
| concepts[2].id | https://openalex.org/C19499675 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7243126630783081 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[2].display_name | Monte Carlo method |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6478406190872192 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.552168071269989 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C163716315 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49021273851394653 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[5].display_name | Gaussian |
| concepts[6].id | https://openalex.org/C2779372316 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4481389820575714 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q569057 |
| concepts[6].display_name | Stiffness |
| concepts[7].id | https://openalex.org/C66938386 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16699305176734924 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[7].display_name | Structural engineering |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15906107425689697 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14810863137245178 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14222049713134766 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07811781764030457 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.056827694177627563 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C59822182 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[15].display_name | Botany |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.7689403295516968 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/structural-health-monitoring |
| keywords[1].score | 0.7483153343200684 |
| keywords[1].display_name | Structural health monitoring |
| keywords[2].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[2].score | 0.7243126630783081 |
| keywords[2].display_name | Monte Carlo method |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6478406190872192 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.552168071269989 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/gaussian |
| keywords[5].score | 0.49021273851394653 |
| keywords[5].display_name | Gaussian |
| keywords[6].id | https://openalex.org/keywords/stiffness |
| keywords[6].score | 0.4481389820575714 |
| keywords[6].display_name | Stiffness |
| keywords[7].id | https://openalex.org/keywords/structural-engineering |
| keywords[7].score | 0.16699305176734924 |
| keywords[7].display_name | Structural engineering |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.15906107425689697 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.14810863137245178 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.14222049713134766 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.07811781764030457 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.056827694177627563 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1177/1550147718786888 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S64417657 |
| locations[0].source.issn | 1550-1329, 1550-1477 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1550-1329 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Distributed Sensor Networks |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Distributed Sensor Networks |
| locations[0].landing_page_url | https://doi.org/10.1177/1550147718786888 |
| locations[1].id | pmh:oai:RePEc:sae:intdis:v:14:y:2018:i:7:p:1550147718786888 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | RePEc: Research Papers in Economics |
| locations[1].source.host_organization | https://openalex.org/I77793887 |
| locations[1].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[1].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://journals.sagepub.com/doi/10.1177/1550147718786888 |
| locations[2].id | pmh:oai:doaj.org/article:471791e7f8b3492c9416e49a1336ce98 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | International Journal of Distributed Sensor Networks, Vol 14 (2018) |
| locations[2].landing_page_url | https://doaj.org/article/471791e7f8b3492c9416e49a1336ce98 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103918335 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6598-670X |
| authorships[0].author.display_name | Songtao Xue |
| authorships[0].countries | CN, JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I103605164 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Architecture, Tohoku Institute of Technology, Sendai, Japan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I116953780 |
| authorships[0].affiliations[1].raw_affiliation_string | Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, P.R. China |
| authorships[0].institutions[0].id | https://openalex.org/I116953780 |
| authorships[0].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tongji University |
| authorships[0].institutions[1].id | https://openalex.org/I103605164 |
| authorships[0].institutions[1].ror | https://ror.org/01phqre83 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I103605164 |
| authorships[0].institutions[1].country_code | JP |
| authorships[0].institutions[1].display_name | Tohoku Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Songtao Xue |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Architecture, Tohoku Institute of Technology, Sendai, Japan, Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, P.R. China |
| authorships[1].author.id | https://openalex.org/A5024696385 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5550-9774 |
| authorships[1].author.display_name | Bo Wen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[1].institutions[0].id | https://openalex.org/I76569877 |
| authorships[1].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bo Wen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[2].author.id | https://openalex.org/A5008881208 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8439-4526 |
| authorships[2].author.display_name | Rui Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[2].institutions[0].id | https://openalex.org/I76569877 |
| authorships[2].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southeast University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rui Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[3].author.id | https://openalex.org/A5112377460 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Liyuan Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[3].institutions[0].id | https://openalex.org/I76569877 |
| authorships[3].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southeast University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liyuan Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[4].author.id | https://openalex.org/A5101827944 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6432-718X |
| authorships[4].author.display_name | Tadanobu Sato |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[4].institutions[0].id | https://openalex.org/I76569877 |
| authorships[4].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Southeast University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tadanobu Sato |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[5].author.id | https://openalex.org/A5100458703 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5777-0645 |
| authorships[5].author.display_name | Liyu Xie |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I116953780 |
| authorships[5].affiliations[0].raw_affiliation_string | Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, P.R. China |
| authorships[5].institutions[0].id | https://openalex.org/I116953780 |
| authorships[5].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tongji University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liyu Xie |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, P.R. China |
| authorships[6].author.id | https://openalex.org/A5019959663 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4241-6026 |
| authorships[6].author.display_name | Hesheng Tang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I116953780 |
| authorships[6].affiliations[0].raw_affiliation_string | Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, P.R. China |
| authorships[6].institutions[0].id | https://openalex.org/I116953780 |
| authorships[6].institutions[0].ror | https://ror.org/03rc6as71 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I116953780 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Tongji University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hesheng Tang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University, Shanghai, P.R. China |
| authorships[7].author.id | https://openalex.org/A5040498282 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4236-6428 |
| authorships[7].author.display_name | Chunfeng Wan |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[7].affiliations[0].raw_affiliation_string | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| authorships[7].institutions[0].id | https://openalex.org/I76569877 |
| authorships[7].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Southeast University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chunfeng Wan |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, P.R. China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W317572049, https://openalex.org/W2017621034, https://openalex.org/W585100505, https://openalex.org/W2393870460, https://openalex.org/W49622843, https://openalex.org/W1993699589, https://openalex.org/W2787341579, https://openalex.org/W4284894156, https://openalex.org/W2161803855, https://openalex.org/W2772836553 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1177/1550147718786888 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S64417657 |
| best_oa_location.source.issn | 1550-1329, 1550-1477 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1550-1329 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Distributed Sensor Networks |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Distributed Sensor Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1177/1550147718786888 |
| primary_location.id | doi:10.1177/1550147718786888 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S64417657 |
| primary_location.source.issn | 1550-1329, 1550-1477 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1550-1329 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Distributed Sensor Networks |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.sagepub.com/doi/pdf/10.1177/1550147718786888 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Distributed Sensor Networks |
| primary_location.landing_page_url | https://doi.org/10.1177/1550147718786888 |
| publication_date | 2018-07-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2120356561, https://openalex.org/W1696927207, https://openalex.org/W2124658044, https://openalex.org/W1974760625, https://openalex.org/W1975748424, https://openalex.org/W2130175225, https://openalex.org/W2071258916, https://openalex.org/W1982104200, https://openalex.org/W2151017736, https://openalex.org/W2092944036, https://openalex.org/W2520432546, https://openalex.org/W2018690243, https://openalex.org/W2518694578, https://openalex.org/W3167551172, https://openalex.org/W2752226133, https://openalex.org/W2063765005, https://openalex.org/W1972731143, https://openalex.org/W2008258053, https://openalex.org/W1858123041 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 13, 37 |
| abstract_inverted_index.As | 12 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.as | 56, 118, 120 |
| abstract_inverted_index.be | 124, 141 |
| abstract_inverted_index.by | 95 |
| abstract_inverted_index.is | 50, 92, 131 |
| abstract_inverted_index.no | 72 |
| abstract_inverted_index.of | 22, 88, 98, 146 |
| abstract_inverted_index.on | 43 |
| abstract_inverted_index.to | 67, 108, 134 |
| abstract_inverted_index.The | 137 |
| abstract_inverted_index.and | 10, 26, 47, 58, 62, 77, 83, 104 |
| abstract_inverted_index.are | 2, 60, 81, 106 |
| abstract_inverted_index.can | 123 |
| abstract_inverted_index.for | 29, 143 |
| abstract_inverted_index.may | 140 |
| abstract_inverted_index.the | 3, 18, 23, 30, 86, 96, 99, 110, 121, 128, 135, 144 |
| abstract_inverted_index.Both | 102 |
| abstract_inverted_index.With | 52 |
| abstract_inverted_index.also | 93 |
| abstract_inverted_index.most | 4, 19 |
| abstract_inverted_index.much | 132 |
| abstract_inverted_index.real | 147 |
| abstract_inverted_index.show | 114 |
| abstract_inverted_index.such | 55 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.well | 119, 125 |
| abstract_inverted_index.with | 71, 74, 78 |
| abstract_inverted_index.Carlo | 45 |
| abstract_inverted_index.Monte | 44 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.noise | 80 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.three | 68 |
| abstract_inverted_index.aspect | 21 |
| abstract_inverted_index.damage | 27, 90 |
| abstract_inverted_index.health | 32, 149 |
| abstract_inverted_index.method | 41, 46, 130, 139 |
| abstract_inverted_index.noise, | 73, 76 |
| abstract_inverted_index.robust | 133 |
| abstract_inverted_index.verify | 109 |
| abstract_inverted_index.which, | 53 |
| abstract_inverted_index.Results | 113 |
| abstract_inverted_index.becomes | 17 |
| abstract_inverted_index.damage, | 89 |
| abstract_inverted_index.damping | 59 |
| abstract_inverted_index.effects | 65 |
| abstract_inverted_index.factors | 6 |
| abstract_inverted_index.method. | 112 |
| abstract_inverted_index.noises. | 136 |
| abstract_inverted_index.result, | 14 |
| abstract_inverted_index.studied | 82 |
| abstract_inverted_index.Gaussian | 75 |
| abstract_inverted_index.article, | 36 |
| abstract_inverted_index.damages, | 122 |
| abstract_inverted_index.estimate | 49 |
| abstract_inverted_index.proposed | 111, 129, 138 |
| abstract_inverted_index.realized | 94 |
| abstract_inverted_index.studied. | 63 |
| abstract_inverted_index.Moreover, | 127 |
| abstract_inverted_index.compared. | 84 |
| abstract_inverted_index.conducted | 107 |
| abstract_inverted_index.different | 69 |
| abstract_inverted_index.essential | 20 |
| abstract_inverted_index.existence | 87 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.parameter | 39 |
| abstract_inverted_index.proposed. | 51 |
| abstract_inverted_index.stiffness | 57 |
| abstract_inverted_index.subjected | 66 |
| abstract_inverted_index.Structural | 0 |
| abstract_inverted_index.assessment | 25 |
| abstract_inverted_index.conditions | 70 |
| abstract_inverted_index.identified | 61 |
| abstract_inverted_index.likelihood | 48 |
| abstract_inverted_index.parameters | 1, 54 |
| abstract_inverted_index.reflecting | 7 |
| abstract_inverted_index.structural | 8, 24, 31, 38, 100, 116, 148 |
| abstract_inverted_index.Considering | 85 |
| abstract_inverted_index.application | 145 |
| abstract_inverted_index.conditions. | 11 |
| abstract_inverted_index.experiments | 105 |
| abstract_inverted_index.identified. | 126 |
| abstract_inverted_index.monitoring. | 33, 150 |
| abstract_inverted_index.parameters, | 117 |
| abstract_inverted_index.parameters. | 101 |
| abstract_inverted_index.performance | 9 |
| abstract_inverted_index.prospective | 142 |
| abstract_inverted_index.simulations | 103 |
| abstract_inverted_index.non-Gaussian | 79 |
| abstract_inverted_index.Identification | 64 |
| abstract_inverted_index.identification | 16, 28, 40, 91, 97 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5040498282 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I76569877 |
| citation_normalized_percentile.value | 0.65880306 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |