Parametric and semiparametric approaches for copula-based regression estimation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.15672/hujms.1359072
Based on the normality assumption on dependent variable, regression analysis is one of the most popular statistical techniques for studying the dependence between response and explanatory variables. However, violation of this assumption in the data makes regression analysis inappropriate in several real life situations. Copula is a powerful tool for modeling multivariate data and have recently been employed in regression analysis. The key concept behind copula-based regression approach is to formulate conditional expectation in terms of copula density and marginal distributions. In this paper, we explore parametric and semiparametric estimations of the copula-based regression function. The maximum likelihood (ML), inference functions for margins (IFM), and pseudo maximum likelihood (PML) techniques are adopted here for estimation purposes. Extensive numerical experiments are performed to illustrate the performance of the proposed copula-based regression estimators under specified and misspecified scenarios of copulas and marginals. Finally, two real data applications are also presented to demonstrate the performance of the considered estimators.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15672/hujms.1359072
- OA Status
- diamond
- Cited By
- 2
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401339564
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401339564Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15672/hujms.1359072Digital Object Identifier
- Title
-
Parametric and semiparametric approaches for copula-based regression estimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-05Full publication date if available
- Authors
-
Alam Ali, Ashok Kumar Pathak, Mohd. ArshadList of authors in order
- Landing page
-
https://doi.org/10.15672/hujms.1359072Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.15672/hujms.1359072Direct OA link when available
- Concepts
-
Copula (linguistics), Mathematics, Estimator, Parametric statistics, Econometrics, Semiparametric regression, Regression analysis, Inference, Regression, Multivariate statistics, Semiparametric model, Statistics, Statistical inference, Conditional probability distribution, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401339564 |
|---|---|
| doi | https://doi.org/10.15672/hujms.1359072 |
| ids.doi | https://doi.org/10.15672/hujms.1359072 |
| ids.openalex | https://openalex.org/W4401339564 |
| fwci | 1.99813528 |
| type | article |
| title | Parametric and semiparametric approaches for copula-based regression estimation |
| biblio.issue | 4 |
| biblio.volume | 53 |
| biblio.last_page | 1157 |
| biblio.first_page | 1141 |
| topics[0].id | https://openalex.org/T10282 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9846000075340271 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2003 |
| topics[0].subfield.display_name | Finance |
| topics[0].display_name | Financial Risk and Volatility Modeling |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9782000184059143 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T11871 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.97079998254776 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Advanced Statistical Methods and Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C17618745 |
| concepts[0].level | 2 |
| concepts[0].score | 0.869041919708252 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q207509 |
| concepts[0].display_name | Copula (linguistics) |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6612040996551514 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.652453601360321 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C117251300 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5836249589920044 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[3].display_name | Parametric statistics |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5656459927558899 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C19539793 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5497413873672485 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7449609 |
| concepts[5].display_name | Semiparametric regression |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48960644006729126 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C2776214188 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47741901874542236 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[7].display_name | Inference |
| concepts[8].id | https://openalex.org/C83546350 |
| concepts[8].level | 2 |
| concepts[8].score | 0.459104061126709 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[8].display_name | Regression |
| concepts[9].id | https://openalex.org/C161584116 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45521044731140137 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[9].display_name | Multivariate statistics |
| concepts[10].id | https://openalex.org/C78297888 |
| concepts[10].level | 3 |
| concepts[10].score | 0.44375672936439514 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7449607 |
| concepts[10].display_name | Semiparametric model |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4365502595901489 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C134261354 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43643227219581604 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[12].display_name | Statistical inference |
| concepts[13].id | https://openalex.org/C43555835 |
| concepts[13].level | 2 |
| concepts[13].score | 0.431001752614975 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2300258 |
| concepts[13].display_name | Conditional probability distribution |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.21896949410438538 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11682212352752686 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/copula |
| keywords[0].score | 0.869041919708252 |
| keywords[0].display_name | Copula (linguistics) |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6612040996551514 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.652453601360321 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/parametric-statistics |
| keywords[3].score | 0.5836249589920044 |
| keywords[3].display_name | Parametric statistics |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.5656459927558899 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/semiparametric-regression |
| keywords[5].score | 0.5497413873672485 |
| keywords[5].display_name | Semiparametric regression |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.48960644006729126 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/inference |
| keywords[7].score | 0.47741901874542236 |
| keywords[7].display_name | Inference |
| keywords[8].id | https://openalex.org/keywords/regression |
| keywords[8].score | 0.459104061126709 |
| keywords[8].display_name | Regression |
| keywords[9].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[9].score | 0.45521044731140137 |
| keywords[9].display_name | Multivariate statistics |
| keywords[10].id | https://openalex.org/keywords/semiparametric-model |
| keywords[10].score | 0.44375672936439514 |
| keywords[10].display_name | Semiparametric model |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.4365502595901489 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/statistical-inference |
| keywords[12].score | 0.43643227219581604 |
| keywords[12].display_name | Statistical inference |
| keywords[13].id | https://openalex.org/keywords/conditional-probability-distribution |
| keywords[13].score | 0.431001752614975 |
| keywords[13].display_name | Conditional probability distribution |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.21896949410438538 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.11682212352752686 |
| keywords[15].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.15672/hujms.1359072 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188591 |
| locations[0].source.issn | 2651-477X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2651-477X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Hacettepe Journal of Mathematics and Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310318412 |
| locations[0].source.host_organization_name | Hacettepe University |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318412 |
| locations[0].source.host_organization_lineage_names | Hacettepe University |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Hacettepe Journal of Mathematics and Statistics |
| locations[0].landing_page_url | https://doi.org/10.15672/hujms.1359072 |
| locations[1].id | pmh:oai:dergipark.org.tr:article/1359072 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | https://dergipark.org.tr/tr/pub/hujms/issue/86781/1359072 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Hacettepe Journal of Mathematics and Statistics |
| locations[1].landing_page_url | https://dergipark.org.tr/tr/pub/hujms/issue/86781/1359072 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101387289 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-1273-0651 |
| authorships[0].author.display_name | Alam Ali |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114724429 |
| authorships[0].affiliations[0].raw_affiliation_string | Central Univery of Punjab, Bathinda |
| authorships[0].institutions[0].id | https://openalex.org/I114724429 |
| authorships[0].institutions[0].ror | https://ror.org/02kknsa06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114724429 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Central University of Punjab |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alam Ali |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Central Univery of Punjab, Bathinda |
| authorships[1].author.id | https://openalex.org/A5101938221 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0774-1202 |
| authorships[1].author.display_name | Ashok Kumar Pathak |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114724429 |
| authorships[1].affiliations[0].raw_affiliation_string | Central University of Punjab, Bathinda |
| authorships[1].institutions[0].id | https://openalex.org/I114724429 |
| authorships[1].institutions[0].ror | https://ror.org/02kknsa06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114724429 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Central University of Punjab |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ashok Pathak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Central University of Punjab, Bathinda |
| authorships[2].author.id | https://openalex.org/A5023321081 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1877-4552 |
| authorships[2].author.display_name | Mohd. Arshad |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I64295750 |
| authorships[2].affiliations[0].raw_affiliation_string | Indian Institute of Technology Indore |
| authorships[2].institutions[0].id | https://openalex.org/I64295750 |
| authorships[2].institutions[0].ror | https://ror.org/01hhf7w52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I64295750 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Indore |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mohd Arshad |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Indian Institute of Technology Indore |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.15672/hujms.1359072 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parametric and semiparametric approaches for copula-based regression estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10282 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9846000075340271 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2003 |
| primary_topic.subfield.display_name | Finance |
| primary_topic.display_name | Financial Risk and Volatility Modeling |
| related_works | https://openalex.org/W3123217622, https://openalex.org/W3151010055, https://openalex.org/W1532780914, https://openalex.org/W3122686941, https://openalex.org/W2393877243, https://openalex.org/W2090382595, https://openalex.org/W2046181616, https://openalex.org/W3139122440, https://openalex.org/W920448194, https://openalex.org/W1981934814 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.15672/hujms.1359072 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188591 |
| best_oa_location.source.issn | 2651-477X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2651-477X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Hacettepe Journal of Mathematics and Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310318412 |
| best_oa_location.source.host_organization_name | Hacettepe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318412 |
| best_oa_location.source.host_organization_lineage_names | Hacettepe University |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Hacettepe Journal of Mathematics and Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.15672/hujms.1359072 |
| primary_location.id | doi:10.15672/hujms.1359072 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188591 |
| primary_location.source.issn | 2651-477X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2651-477X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Hacettepe Journal of Mathematics and Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310318412 |
| primary_location.source.host_organization_name | Hacettepe University |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318412 |
| primary_location.source.host_organization_lineage_names | Hacettepe University |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Hacettepe Journal of Mathematics and Statistics |
| primary_location.landing_page_url | https://doi.org/10.15672/hujms.1359072 |
| publication_date | 2024-08-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2903241066, https://openalex.org/W2059049776, https://openalex.org/W4250505091, https://openalex.org/W2146190495, https://openalex.org/W2110182275, https://openalex.org/W3125013769, https://openalex.org/W1981848152, https://openalex.org/W3207247276, https://openalex.org/W1990860515, https://openalex.org/W2015339214, https://openalex.org/W3044866424, https://openalex.org/W4399570722, https://openalex.org/W2479980505, https://openalex.org/W390686421, https://openalex.org/W2081967765, https://openalex.org/W2042557026, https://openalex.org/W2322108442, https://openalex.org/W2046095281, https://openalex.org/W2801490189, https://openalex.org/W2062495152, https://openalex.org/W1987081668, https://openalex.org/W2022034627, https://openalex.org/W4229058396, https://openalex.org/W2960028177, https://openalex.org/W2159944313, https://openalex.org/W2087160118, https://openalex.org/W3103058014 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 46 |
| abstract_inverted_index.In | 81 |
| abstract_inverted_index.in | 32, 39, 58, 73 |
| abstract_inverted_index.is | 10, 45, 68 |
| abstract_inverted_index.of | 12, 29, 75, 90, 125, 136, 152 |
| abstract_inverted_index.on | 1, 5 |
| abstract_inverted_index.to | 69, 121, 148 |
| abstract_inverted_index.we | 84 |
| abstract_inverted_index.The | 61, 95 |
| abstract_inverted_index.and | 24, 53, 78, 87, 104, 133, 138 |
| abstract_inverted_index.are | 110, 119, 145 |
| abstract_inverted_index.for | 18, 49, 101, 113 |
| abstract_inverted_index.key | 62 |
| abstract_inverted_index.one | 11 |
| abstract_inverted_index.the | 2, 13, 20, 33, 91, 123, 126, 150, 153 |
| abstract_inverted_index.two | 141 |
| abstract_inverted_index.also | 146 |
| abstract_inverted_index.been | 56 |
| abstract_inverted_index.data | 34, 52, 143 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.here | 112 |
| abstract_inverted_index.life | 42 |
| abstract_inverted_index.most | 14 |
| abstract_inverted_index.real | 41, 142 |
| abstract_inverted_index.this | 30, 82 |
| abstract_inverted_index.tool | 48 |
| abstract_inverted_index.(ML), | 98 |
| abstract_inverted_index.(PML) | 108 |
| abstract_inverted_index.Based | 0 |
| abstract_inverted_index.makes | 35 |
| abstract_inverted_index.terms | 74 |
| abstract_inverted_index.under | 131 |
| abstract_inverted_index.(IFM), | 103 |
| abstract_inverted_index.Copula | 44 |
| abstract_inverted_index.behind | 64 |
| abstract_inverted_index.copula | 76 |
| abstract_inverted_index.paper, | 83 |
| abstract_inverted_index.pseudo | 105 |
| abstract_inverted_index.adopted | 111 |
| abstract_inverted_index.between | 22 |
| abstract_inverted_index.concept | 63 |
| abstract_inverted_index.copulas | 137 |
| abstract_inverted_index.density | 77 |
| abstract_inverted_index.explore | 85 |
| abstract_inverted_index.margins | 102 |
| abstract_inverted_index.maximum | 96, 106 |
| abstract_inverted_index.popular | 15 |
| abstract_inverted_index.several | 40 |
| abstract_inverted_index.Finally, | 140 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.analysis | 9, 37 |
| abstract_inverted_index.approach | 67 |
| abstract_inverted_index.employed | 57 |
| abstract_inverted_index.marginal | 79 |
| abstract_inverted_index.modeling | 50 |
| abstract_inverted_index.powerful | 47 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.recently | 55 |
| abstract_inverted_index.response | 23 |
| abstract_inverted_index.studying | 19 |
| abstract_inverted_index.Extensive | 116 |
| abstract_inverted_index.analysis. | 60 |
| abstract_inverted_index.dependent | 6 |
| abstract_inverted_index.formulate | 70 |
| abstract_inverted_index.function. | 94 |
| abstract_inverted_index.functions | 100 |
| abstract_inverted_index.inference | 99 |
| abstract_inverted_index.normality | 3 |
| abstract_inverted_index.numerical | 117 |
| abstract_inverted_index.performed | 120 |
| abstract_inverted_index.presented | 147 |
| abstract_inverted_index.purposes. | 115 |
| abstract_inverted_index.scenarios | 135 |
| abstract_inverted_index.specified | 132 |
| abstract_inverted_index.variable, | 7 |
| abstract_inverted_index.violation | 28 |
| abstract_inverted_index.assumption | 4, 31 |
| abstract_inverted_index.considered | 154 |
| abstract_inverted_index.dependence | 21 |
| abstract_inverted_index.estimation | 114 |
| abstract_inverted_index.estimators | 130 |
| abstract_inverted_index.illustrate | 122 |
| abstract_inverted_index.likelihood | 97, 107 |
| abstract_inverted_index.marginals. | 139 |
| abstract_inverted_index.parametric | 86 |
| abstract_inverted_index.regression | 8, 36, 59, 66, 93, 129 |
| abstract_inverted_index.techniques | 17, 109 |
| abstract_inverted_index.variables. | 26 |
| abstract_inverted_index.conditional | 71 |
| abstract_inverted_index.demonstrate | 149 |
| abstract_inverted_index.estimations | 89 |
| abstract_inverted_index.estimators. | 155 |
| abstract_inverted_index.expectation | 72 |
| abstract_inverted_index.experiments | 118 |
| abstract_inverted_index.explanatory | 25 |
| abstract_inverted_index.performance | 124, 151 |
| abstract_inverted_index.situations. | 43 |
| abstract_inverted_index.statistical | 16 |
| abstract_inverted_index.applications | 144 |
| abstract_inverted_index.copula-based | 65, 92, 128 |
| abstract_inverted_index.misspecified | 134 |
| abstract_inverted_index.multivariate | 51 |
| abstract_inverted_index.inappropriate | 38 |
| abstract_inverted_index.distributions. | 80 |
| abstract_inverted_index.semiparametric | 88 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.83365751 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |