Parametric Frailty Analysis in Presence of Collinearity: An Application to Assessment of Infant Mortality Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/math10132255
This paper analyzes the time to event data in the presence of collinearity. To address collinearity, the ridge regression estimator was applied in multiple and logistic regression as an alternative to the maximum likelihood estimator (MLE), among others. It has a smaller mean square error (MSE) and is therefore more precise. This paper generalizes the approach to address collinearity in the frailty model, which is a random effect model for the time variable. A simulation study is conducted to evaluate its performance. Furthermore, the proposed method is applied on real life data taken from the largest sample survey of India, i.e., national family health survey (2005–2006 ) data to evaluate the association of different determinants on infant mortality in India.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math10132255
- https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652
- OA Status
- gold
- Cited By
- 4
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283661816
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283661816Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math10132255Digital Object Identifier
- Title
-
Parametric Frailty Analysis in Presence of Collinearity: An Application to Assessment of Infant MortalityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-27Full publication date if available
- Authors
-
Olayan Albalawi, Anu Sirohi, Piyush Kant, Ayed R. A. AlanziList of authors in order
- Landing page
-
https://doi.org/10.3390/math10132255Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652Direct OA link when available
- Concepts
-
Collinearity, Statistics, Logistic regression, Estimator, Multicollinearity, Parametric statistics, Econometrics, Mathematics, Regression analysis, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283661816 |
|---|---|
| doi | https://doi.org/10.3390/math10132255 |
| ids.doi | https://doi.org/10.3390/math10132255 |
| ids.openalex | https://openalex.org/W4283661816 |
| fwci | 1.66976332 |
| type | article |
| title | Parametric Frailty Analysis in Presence of Collinearity: An Application to Assessment of Infant Mortality |
| biblio.issue | 13 |
| biblio.volume | 10 |
| biblio.last_page | 2255 |
| biblio.first_page | 2255 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9887999892234802 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9886000156402588 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9718999862670898 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C106192678 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9423468112945557 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1419761 |
| concepts[0].display_name | Collinearity |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7056093215942383 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C151956035 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6297997236251831 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[2].display_name | Logistic regression |
| concepts[3].id | https://openalex.org/C185429906 |
| concepts[3].level | 2 |
| concepts[3].score | 0.623559296131134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[3].display_name | Estimator |
| concepts[4].id | https://openalex.org/C189285262 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4864175319671631 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1332350 |
| concepts[4].display_name | Multicollinearity |
| concepts[5].id | https://openalex.org/C117251300 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4660882353782654 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[5].display_name | Parametric statistics |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.42458975315093994 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.422261506319046 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C152877465 |
| concepts[8].level | 2 |
| concepts[8].score | 0.40370965003967285 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[8].display_name | Regression analysis |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.35163018107414246 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/collinearity |
| keywords[0].score | 0.9423468112945557 |
| keywords[0].display_name | Collinearity |
| keywords[1].id | https://openalex.org/keywords/statistics |
| keywords[1].score | 0.7056093215942383 |
| keywords[1].display_name | Statistics |
| keywords[2].id | https://openalex.org/keywords/logistic-regression |
| keywords[2].score | 0.6297997236251831 |
| keywords[2].display_name | Logistic regression |
| keywords[3].id | https://openalex.org/keywords/estimator |
| keywords[3].score | 0.623559296131134 |
| keywords[3].display_name | Estimator |
| keywords[4].id | https://openalex.org/keywords/multicollinearity |
| keywords[4].score | 0.4864175319671631 |
| keywords[4].display_name | Multicollinearity |
| keywords[5].id | https://openalex.org/keywords/parametric-statistics |
| keywords[5].score | 0.4660882353782654 |
| keywords[5].display_name | Parametric statistics |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.42458975315093994 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.422261506319046 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/regression-analysis |
| keywords[8].score | 0.40370965003967285 |
| keywords[8].display_name | Regression analysis |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.35163018107414246 |
| keywords[9].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.3390/math10132255 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math10132255 |
| locations[1].id | pmh:oai:doaj.org/article:b8342d45c32245e393e747ec0949d420 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 10, Iss 13, p 2255 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/b8342d45c32245e393e747ec0949d420 |
| locations[2].id | pmh:oai:mdpi.com:/2227-7390/10/13/2255/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Mathematics; Volume 10; Issue 13; Pages: 2255 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/math10132255 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5032898599 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7772-0386 |
| authorships[0].author.display_name | Olayan Albalawi |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I72264486 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I72264486 |
| authorships[0].institutions[0].ror | https://ror.org/04yej8x59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I72264486 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | University of Tabuk |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Olayan Albalawi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5001696678 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9441-3364 |
| authorships[1].author.display_name | Anu Sirohi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74885063 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, Sharda University, Greater Noida 201310, India |
| authorships[1].institutions[0].id | https://openalex.org/I74885063 |
| authorships[1].institutions[0].ror | https://ror.org/03b6ffh07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74885063 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Sharda University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anu Sirohi |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Sharda University, Greater Noida 201310, India |
| authorships[2].author.id | https://openalex.org/A5049741558 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3545-3910 |
| authorships[2].author.display_name | Piyush Kant |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91357014 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi 221005, India |
| authorships[2].institutions[0].id | https://openalex.org/I91357014 |
| authorships[2].institutions[0].ror | https://ror.org/04cdn2797 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91357014 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Banaras Hindu University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Piyush Kant Rai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi 221005, India |
| authorships[3].author.id | https://openalex.org/A5000311601 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5337-2276 |
| authorships[3].author.display_name | Ayed R. A. Alanzi |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I199702508 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Science and Arts in Gurayat, Jouf University, Gurayat 77454, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I199702508 |
| authorships[3].institutions[0].ror | https://ror.org/02zsyt821 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I199702508 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Jouf University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ayed R. A. Alanzi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics, College of Science and Arts in Gurayat, Jouf University, Gurayat 77454, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parametric Frailty Analysis in Presence of Collinearity: An Application to Assessment of Infant Mortality |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9887999892234802 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W1987707056, https://openalex.org/W2963878163, https://openalex.org/W2384030147, https://openalex.org/W4234250504, https://openalex.org/W2081935514, https://openalex.org/W4231441142, https://openalex.org/W2076812056, https://openalex.org/W1983422301, https://openalex.org/W2994653454, https://openalex.org/W4388522823 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/math10132255 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math10132255 |
| primary_location.id | doi:10.3390/math10132255 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/10/13/2255/pdf?version=1656663652 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math10132255 |
| publication_date | 2022-06-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1484801239, https://openalex.org/W1986601543, https://openalex.org/W7002469477, https://openalex.org/W2008331325, https://openalex.org/W6670733653, https://openalex.org/W2059292762, https://openalex.org/W2012265390, https://openalex.org/W4234698323, https://openalex.org/W6667299493, https://openalex.org/W2139766869, https://openalex.org/W2095400202, https://openalex.org/W2106393550, https://openalex.org/W2056124784, https://openalex.org/W2403080995, https://openalex.org/W2039464996, https://openalex.org/W2062793108, https://openalex.org/W2050418356, https://openalex.org/W4240874411, https://openalex.org/W2960901905, https://openalex.org/W2006774845, https://openalex.org/W2091633500, https://openalex.org/W2066796151, https://openalex.org/W2081228970, https://openalex.org/W2611335817 |
| referenced_works_count | 24 |
| abstract_inverted_index.) | 106 |
| abstract_inverted_index.A | 73 |
| abstract_inverted_index.a | 40, 65 |
| abstract_inverted_index.It | 38 |
| abstract_inverted_index.To | 13 |
| abstract_inverted_index.an | 28 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.in | 8, 22, 59, 118 |
| abstract_inverted_index.is | 47, 64, 76, 86 |
| abstract_inverted_index.of | 11, 98, 112 |
| abstract_inverted_index.on | 88, 115 |
| abstract_inverted_index.to | 5, 30, 56, 78, 108 |
| abstract_inverted_index.and | 24, 46 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.has | 39 |
| abstract_inverted_index.its | 80 |
| abstract_inverted_index.the | 3, 9, 16, 31, 54, 60, 70, 83, 94, 110 |
| abstract_inverted_index.was | 20 |
| abstract_inverted_index.This | 0, 51 |
| abstract_inverted_index.data | 7, 91, 107 |
| abstract_inverted_index.from | 93 |
| abstract_inverted_index.life | 90 |
| abstract_inverted_index.mean | 42 |
| abstract_inverted_index.more | 49 |
| abstract_inverted_index.real | 89 |
| abstract_inverted_index.time | 4, 71 |
| abstract_inverted_index.(MSE) | 45 |
| abstract_inverted_index.among | 36 |
| abstract_inverted_index.error | 44 |
| abstract_inverted_index.event | 6 |
| abstract_inverted_index.i.e., | 100 |
| abstract_inverted_index.model | 68 |
| abstract_inverted_index.paper | 1, 52 |
| abstract_inverted_index.ridge | 17 |
| abstract_inverted_index.study | 75 |
| abstract_inverted_index.taken | 92 |
| abstract_inverted_index.which | 63 |
| abstract_inverted_index.(MLE), | 35 |
| abstract_inverted_index.India, | 99 |
| abstract_inverted_index.India. | 119 |
| abstract_inverted_index.effect | 67 |
| abstract_inverted_index.family | 102 |
| abstract_inverted_index.health | 103 |
| abstract_inverted_index.infant | 116 |
| abstract_inverted_index.method | 85 |
| abstract_inverted_index.model, | 62 |
| abstract_inverted_index.random | 66 |
| abstract_inverted_index.sample | 96 |
| abstract_inverted_index.square | 43 |
| abstract_inverted_index.survey | 97, 104 |
| abstract_inverted_index.address | 14, 57 |
| abstract_inverted_index.applied | 21, 87 |
| abstract_inverted_index.frailty | 61 |
| abstract_inverted_index.largest | 95 |
| abstract_inverted_index.maximum | 32 |
| abstract_inverted_index.others. | 37 |
| abstract_inverted_index.smaller | 41 |
| abstract_inverted_index.analyzes | 2 |
| abstract_inverted_index.approach | 55 |
| abstract_inverted_index.evaluate | 79, 109 |
| abstract_inverted_index.logistic | 25 |
| abstract_inverted_index.multiple | 23 |
| abstract_inverted_index.national | 101 |
| abstract_inverted_index.precise. | 50 |
| abstract_inverted_index.presence | 10 |
| abstract_inverted_index.proposed | 84 |
| abstract_inverted_index.conducted | 77 |
| abstract_inverted_index.different | 113 |
| abstract_inverted_index.estimator | 19, 34 |
| abstract_inverted_index.mortality | 117 |
| abstract_inverted_index.therefore | 48 |
| abstract_inverted_index.variable. | 72 |
| abstract_inverted_index.likelihood | 33 |
| abstract_inverted_index.regression | 18, 26 |
| abstract_inverted_index.simulation | 74 |
| abstract_inverted_index.alternative | 29 |
| abstract_inverted_index.association | 111 |
| abstract_inverted_index.generalizes | 53 |
| abstract_inverted_index.(2005–2006 | 105 |
| abstract_inverted_index.Furthermore, | 82 |
| abstract_inverted_index.collinearity | 58 |
| abstract_inverted_index.determinants | 114 |
| abstract_inverted_index.performance. | 81 |
| abstract_inverted_index.collinearity, | 15 |
| abstract_inverted_index.collinearity. | 12 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5001696678 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I74885063 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.77022538 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |