Parametric multi-fidelity Monte Carlo estimation with applications to extremes Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.08523
In a multi-fidelity setting, data are available from two sources, high- and low-fidelity. Low-fidelity data has larger size and can be leveraged to make more efficient inference about quantities of interest, e.g. the mean, for high-fidelity variables. In this work, such multi-fidelity setting is studied when the goal is to fit more efficiently a parametric model to high-fidelity data. Three multi-fidelity parameter estimation methods are considered, joint maximum likelihood, (multi-fidelity) moment estimation and (multi-fidelity) marginal maximum likelihood, and are illustrated on several parametric models, with the focus on parametric families used in extreme value analysis. An application is also provided concerning quantification of occurrences of extreme ship motions generated by two computer codes of varying fidelity.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.08523
- https://arxiv.org/pdf/2410.08523
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403444255
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403444255Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.08523Digital Object Identifier
- Title
-
Parametric multi-fidelity Monte Carlo estimation with applications to extremesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-11Full publication date if available
- Authors
-
Minji Kim, Brendan Brown, Vladas PipirasList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.08523Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.08523Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.08523Direct OA link when available
- Concepts
-
Monte Carlo method, Parametric statistics, Fidelity, Estimation, Computer science, Statistical physics, Econometrics, Parametric model, Statistics, Mathematics, Engineering, Physics, Systems engineering, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403444255 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.08523 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.08523 |
| ids.openalex | https://openalex.org/W4403444255 |
| fwci | |
| type | preprint |
| title | Parametric multi-fidelity Monte Carlo estimation with applications to extremes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11801 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8698999881744385 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Reservoir Engineering and Simulation Methods |
| topics[1].id | https://openalex.org/T10007 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.7498000264167786 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2000 |
| topics[1].subfield.display_name | General Economics, Econometrics and Finance |
| topics[1].display_name | Monetary Policy and Economic Impact |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8043200969696045 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C117251300 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7055950164794922 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[1].display_name | Parametric statistics |
| concepts[2].id | https://openalex.org/C2776459999 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5635161399841309 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[2].display_name | Fidelity |
| concepts[3].id | https://openalex.org/C96250715 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5354063510894775 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[3].display_name | Estimation |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5309595465660095 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C121864883 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5208438038825989 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[5].display_name | Statistical physics |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4431179463863373 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C24574437 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4231167435646057 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7135228 |
| concepts[7].display_name | Parametric model |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21736964583396912 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19733792543411255 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16456350684165955 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1352853775024414 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07811242341995239 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.8043200969696045 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/parametric-statistics |
| keywords[1].score | 0.7055950164794922 |
| keywords[1].display_name | Parametric statistics |
| keywords[2].id | https://openalex.org/keywords/fidelity |
| keywords[2].score | 0.5635161399841309 |
| keywords[2].display_name | Fidelity |
| keywords[3].id | https://openalex.org/keywords/estimation |
| keywords[3].score | 0.5354063510894775 |
| keywords[3].display_name | Estimation |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5309595465660095 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/statistical-physics |
| keywords[5].score | 0.5208438038825989 |
| keywords[5].display_name | Statistical physics |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.4431179463863373 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/parametric-model |
| keywords[7].score | 0.4231167435646057 |
| keywords[7].display_name | Parametric model |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.21736964583396912 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.19733792543411255 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.16456350684165955 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.1352853775024414 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/systems-engineering |
| keywords[12].score | 0.07811242341995239 |
| keywords[12].display_name | Systems engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.08523 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.08523 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.08523 |
| locations[1].id | doi:10.48550/arxiv.2410.08523 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.08523 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100317762 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0685-291X |
| authorships[0].author.display_name | Minji Kim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kim, Minji |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062735954 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2718-5194 |
| authorships[1].author.display_name | Brendan Brown |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brown, Brendan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004623767 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6838-6294 |
| authorships[2].author.display_name | Vladas Pipiras |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Pipiras, Vladas |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.08523 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-16T00:00:00 |
| display_name | Parametric multi-fidelity Monte Carlo estimation with applications to extremes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11801 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8698999881744385 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Reservoir Engineering and Simulation Methods |
| related_works | https://openalex.org/W2289718384, https://openalex.org/W1995675544, https://openalex.org/W2509524819, https://openalex.org/W2012121796, https://openalex.org/W2068427817, https://openalex.org/W2952090425, https://openalex.org/W2538333368, https://openalex.org/W3127866798, https://openalex.org/W4294845631, https://openalex.org/W1518153952 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.08523 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.08523 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.08523 |
| primary_location.id | pmh:oai:arXiv.org:2410.08523 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.08523 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.08523 |
| publication_date | 2024-10-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 1, 53 |
| abstract_inverted_index.An | 95 |
| abstract_inverted_index.In | 0, 37 |
| abstract_inverted_index.be | 20 |
| abstract_inverted_index.by | 109 |
| abstract_inverted_index.in | 91 |
| abstract_inverted_index.is | 43, 48, 97 |
| abstract_inverted_index.of | 29, 102, 104, 113 |
| abstract_inverted_index.on | 80, 87 |
| abstract_inverted_index.to | 22, 49, 56 |
| abstract_inverted_index.and | 11, 18, 72, 77 |
| abstract_inverted_index.are | 5, 64, 78 |
| abstract_inverted_index.can | 19 |
| abstract_inverted_index.fit | 50 |
| abstract_inverted_index.for | 34 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.the | 32, 46, 85 |
| abstract_inverted_index.two | 8, 110 |
| abstract_inverted_index.also | 98 |
| abstract_inverted_index.data | 4, 14 |
| abstract_inverted_index.e.g. | 31 |
| abstract_inverted_index.from | 7 |
| abstract_inverted_index.goal | 47 |
| abstract_inverted_index.make | 23 |
| abstract_inverted_index.more | 24, 51 |
| abstract_inverted_index.ship | 106 |
| abstract_inverted_index.size | 17 |
| abstract_inverted_index.such | 40 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.used | 90 |
| abstract_inverted_index.when | 45 |
| abstract_inverted_index.with | 84 |
| abstract_inverted_index.Three | 59 |
| abstract_inverted_index.about | 27 |
| abstract_inverted_index.codes | 112 |
| abstract_inverted_index.data. | 58 |
| abstract_inverted_index.focus | 86 |
| abstract_inverted_index.high- | 10 |
| abstract_inverted_index.joint | 66 |
| abstract_inverted_index.mean, | 33 |
| abstract_inverted_index.model | 55 |
| abstract_inverted_index.value | 93 |
| abstract_inverted_index.work, | 39 |
| abstract_inverted_index.larger | 16 |
| abstract_inverted_index.moment | 70 |
| abstract_inverted_index.extreme | 92, 105 |
| abstract_inverted_index.maximum | 67, 75 |
| abstract_inverted_index.methods | 63 |
| abstract_inverted_index.models, | 83 |
| abstract_inverted_index.motions | 107 |
| abstract_inverted_index.setting | 42 |
| abstract_inverted_index.several | 81 |
| abstract_inverted_index.studied | 44 |
| abstract_inverted_index.varying | 114 |
| abstract_inverted_index.computer | 111 |
| abstract_inverted_index.families | 89 |
| abstract_inverted_index.marginal | 74 |
| abstract_inverted_index.provided | 99 |
| abstract_inverted_index.setting, | 3 |
| abstract_inverted_index.sources, | 9 |
| abstract_inverted_index.analysis. | 94 |
| abstract_inverted_index.available | 6 |
| abstract_inverted_index.efficient | 25 |
| abstract_inverted_index.fidelity. | 115 |
| abstract_inverted_index.generated | 108 |
| abstract_inverted_index.inference | 26 |
| abstract_inverted_index.interest, | 30 |
| abstract_inverted_index.leveraged | 21 |
| abstract_inverted_index.parameter | 61 |
| abstract_inverted_index.concerning | 100 |
| abstract_inverted_index.estimation | 62, 71 |
| abstract_inverted_index.parametric | 54, 82, 88 |
| abstract_inverted_index.quantities | 28 |
| abstract_inverted_index.variables. | 36 |
| abstract_inverted_index.application | 96 |
| abstract_inverted_index.considered, | 65 |
| abstract_inverted_index.efficiently | 52 |
| abstract_inverted_index.illustrated | 79 |
| abstract_inverted_index.likelihood, | 68, 76 |
| abstract_inverted_index.occurrences | 103 |
| abstract_inverted_index.Low-fidelity | 13 |
| abstract_inverted_index.high-fidelity | 35, 57 |
| abstract_inverted_index.low-fidelity. | 12 |
| abstract_inverted_index.multi-fidelity | 2, 41, 60 |
| abstract_inverted_index.quantification | 101 |
| abstract_inverted_index.(multi-fidelity) | 69, 73 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |