Parametric reduced order models with machine learning for spatial emulation of mixing and combustion problems Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.14566
High-fidelity simulations of mixing and combustion processes are generally computationally demanding and time-consuming, hindering their wide application in industrial design and optimization. The present study proposes parametric reduced order models (ROMs) to emulate spatial distributions of physical fields for multi-species mixing and combustion problems in a fast and accurate manner. The model integrates recent advances in experimental design, high-dimensional data assimilation, proper-orthogonal-decomposition (POD)-based model reduction, and machine learning (ML). The ML methods of concern include Gaussian process kriging, second-order polynomial regression, k-nearest neighbors, deep neural network (DNN), and support vector regression. Parametric ROMs with different ML methods are carefully examined through the emulation of mixing and combustion of steam-diluted fuel blend and oxygen issuing from a triple-coaxial nozzle. Two design parameters, fuel blending ratio (hydrogen/methane) and steam dilution ratio, are considered. Numerical simulations are performed and training data is assimilated at sampling points determined by the Latin-hypercube design method. The results show that ROM with kriging presents a superior performance in predicting almost all physical fields, such as temperature, velocity magnitude, and combustion products, at different validation points. The accuracy of ROM with DNN is not encouraging owing to the stringent requirement on the size of training database, which cannot be guaranteed as many engineering problems are specific and associated data availability is limited. For the emulation of spatial field, the parametric ROMs achieve a turnaround time of up to eight orders of magnitude faster than conventional numerical simulation, facilitating an efficient framework for design and optimization.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.14566
- https://arxiv.org/pdf/2308.14566
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386273207
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386273207Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.14566Digital Object Identifier
- Title
-
Parametric reduced order models with machine learning for spatial emulation of mixing and combustion problemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-28Full publication date if available
- Authors
-
Chenxu Ni, Siyu Ding, Xingjian WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.14566Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.14566Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.14566Direct OA link when available
- Concepts
-
Kriging, Computer science, Artificial neural network, Gaussian process, Latin hypercube sampling, Combustion, Emulation, Parametric statistics, Simulation, Machine learning, Gaussian, Mathematics, Monte Carlo method, Quantum mechanics, Economic growth, Chemistry, Economics, Physics, Organic chemistry, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386273207 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.14566 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.14566 |
| ids.openalex | https://openalex.org/W4386273207 |
| fwci | |
| type | preprint |
| title | Parametric reduced order models with machine learning for spatial emulation of mixing and combustion problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10117 |
| topics[0].field.id | https://openalex.org/fields/15 |
| topics[0].field.display_name | Chemical Engineering |
| topics[0].score | 0.9718999862670898 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1507 |
| topics[0].subfield.display_name | Fluid Flow and Transfer Processes |
| topics[0].display_name | Advanced Combustion Engine Technologies |
| topics[1].id | https://openalex.org/T10553 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9573000073432922 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Combustion and flame dynamics |
| topics[2].id | https://openalex.org/T13791 |
| topics[2].field.id | https://openalex.org/fields/34 |
| topics[2].field.display_name | Veterinary |
| topics[2].score | 0.9506000280380249 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3404 |
| topics[2].subfield.display_name | Small Animals |
| topics[2].display_name | Veterinary medicine and infectious diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81692654 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6816501617431641 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[0].display_name | Kriging |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5667003393173218 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5400292873382568 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C61326573 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5325030088424683 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[3].display_name | Gaussian process |
| concepts[4].id | https://openalex.org/C20820323 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4969363510608673 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6496514 |
| concepts[4].display_name | Latin hypercube sampling |
| concepts[5].id | https://openalex.org/C105923489 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48726406693458557 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q133235 |
| concepts[5].display_name | Combustion |
| concepts[6].id | https://openalex.org/C149810388 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4771575331687927 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5374873 |
| concepts[6].display_name | Emulation |
| concepts[7].id | https://openalex.org/C117251300 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4751736521720886 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[7].display_name | Parametric statistics |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32869672775268555 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3032847046852112 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C163716315 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2633347809314728 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[10].display_name | Gaussian |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1616523563861847 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C19499675 |
| concepts[12].level | 2 |
| concepts[12].score | 0.14556825160980225 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[12].display_name | Monte Carlo method |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C50522688 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[14].display_name | Economic growth |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C178790620 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[18].display_name | Organic chemistry |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/kriging |
| keywords[0].score | 0.6816501617431641 |
| keywords[0].display_name | Kriging |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5667003393173218 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5400292873382568 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/gaussian-process |
| keywords[3].score | 0.5325030088424683 |
| keywords[3].display_name | Gaussian process |
| keywords[4].id | https://openalex.org/keywords/latin-hypercube-sampling |
| keywords[4].score | 0.4969363510608673 |
| keywords[4].display_name | Latin hypercube sampling |
| keywords[5].id | https://openalex.org/keywords/combustion |
| keywords[5].score | 0.48726406693458557 |
| keywords[5].display_name | Combustion |
| keywords[6].id | https://openalex.org/keywords/emulation |
| keywords[6].score | 0.4771575331687927 |
| keywords[6].display_name | Emulation |
| keywords[7].id | https://openalex.org/keywords/parametric-statistics |
| keywords[7].score | 0.4751736521720886 |
| keywords[7].display_name | Parametric statistics |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.32869672775268555 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3032847046852112 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/gaussian |
| keywords[10].score | 0.2633347809314728 |
| keywords[10].display_name | Gaussian |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.1616523563861847 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[12].score | 0.14556825160980225 |
| keywords[12].display_name | Monte Carlo method |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.14566 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.14566 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.14566 |
| locations[1].id | doi:10.48550/arxiv.2308.14566 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.14566 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078301039 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3551-1663 |
| authorships[0].author.display_name | Chenxu Ni |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ni, Chenxu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5089094092 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5143-8059 |
| authorships[1].author.display_name | Siyu Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ding, Siyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100694628 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6704-3097 |
| authorships[2].author.display_name | Xingjian Wang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wang, Xingjian |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.14566 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parametric reduced order models with machine learning for spatial emulation of mixing and combustion problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10117 |
| primary_topic.field.id | https://openalex.org/fields/15 |
| primary_topic.field.display_name | Chemical Engineering |
| primary_topic.score | 0.9718999862670898 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1507 |
| primary_topic.subfield.display_name | Fluid Flow and Transfer Processes |
| primary_topic.display_name | Advanced Combustion Engine Technologies |
| related_works | https://openalex.org/W3125613328, https://openalex.org/W3147153020, https://openalex.org/W3121339476, https://openalex.org/W3171168640, https://openalex.org/W3122455945, https://openalex.org/W2769797931, https://openalex.org/W3147439652, https://openalex.org/W83509125, https://openalex.org/W4309878734, https://openalex.org/W566010457 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.14566 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.14566 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.14566 |
| primary_location.id | pmh:oai:arXiv.org:2308.14566 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.14566 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.14566 |
| publication_date | 2023-08-28 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 45, 115, 157, 224 |
| abstract_inverted_index.ML | 70, 95 |
| abstract_inverted_index.an | 240 |
| abstract_inverted_index.as | 167, 202 |
| abstract_inverted_index.at | 140, 174 |
| abstract_inverted_index.be | 200 |
| abstract_inverted_index.by | 144 |
| abstract_inverted_index.in | 17, 44, 55, 160 |
| abstract_inverted_index.is | 138, 184, 212 |
| abstract_inverted_index.of | 2, 35, 72, 103, 107, 180, 195, 217, 227, 232 |
| abstract_inverted_index.on | 192 |
| abstract_inverted_index.to | 31, 188, 229 |
| abstract_inverted_index.up | 228 |
| abstract_inverted_index.DNN | 183 |
| abstract_inverted_index.For | 214 |
| abstract_inverted_index.ROM | 153, 181 |
| abstract_inverted_index.The | 22, 50, 69, 149, 178 |
| abstract_inverted_index.Two | 118 |
| abstract_inverted_index.all | 163 |
| abstract_inverted_index.and | 4, 11, 20, 41, 47, 65, 87, 105, 111, 125, 135, 171, 208, 245 |
| abstract_inverted_index.are | 7, 97, 129, 133, 206 |
| abstract_inverted_index.for | 38, 243 |
| abstract_inverted_index.not | 185 |
| abstract_inverted_index.the | 101, 145, 189, 193, 215, 220 |
| abstract_inverted_index.ROMs | 92, 222 |
| abstract_inverted_index.data | 59, 137, 210 |
| abstract_inverted_index.deep | 83 |
| abstract_inverted_index.fast | 46 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.fuel | 109, 121 |
| abstract_inverted_index.many | 203 |
| abstract_inverted_index.show | 151 |
| abstract_inverted_index.size | 194 |
| abstract_inverted_index.such | 166 |
| abstract_inverted_index.than | 235 |
| abstract_inverted_index.that | 152 |
| abstract_inverted_index.time | 226 |
| abstract_inverted_index.wide | 15 |
| abstract_inverted_index.with | 93, 154, 182 |
| abstract_inverted_index.(ML). | 68 |
| abstract_inverted_index.blend | 110 |
| abstract_inverted_index.eight | 230 |
| abstract_inverted_index.model | 51, 63 |
| abstract_inverted_index.order | 28 |
| abstract_inverted_index.owing | 187 |
| abstract_inverted_index.ratio | 123 |
| abstract_inverted_index.steam | 126 |
| abstract_inverted_index.study | 24 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.which | 198 |
| abstract_inverted_index.(DNN), | 86 |
| abstract_inverted_index.(ROMs) | 30 |
| abstract_inverted_index.almost | 162 |
| abstract_inverted_index.cannot | 199 |
| abstract_inverted_index.design | 19, 119, 147, 244 |
| abstract_inverted_index.faster | 234 |
| abstract_inverted_index.field, | 219 |
| abstract_inverted_index.fields | 37 |
| abstract_inverted_index.mixing | 3, 40, 104 |
| abstract_inverted_index.models | 29 |
| abstract_inverted_index.neural | 84 |
| abstract_inverted_index.orders | 231 |
| abstract_inverted_index.oxygen | 112 |
| abstract_inverted_index.points | 142 |
| abstract_inverted_index.ratio, | 128 |
| abstract_inverted_index.recent | 53 |
| abstract_inverted_index.vector | 89 |
| abstract_inverted_index.achieve | 223 |
| abstract_inverted_index.concern | 73 |
| abstract_inverted_index.design, | 57 |
| abstract_inverted_index.emulate | 32 |
| abstract_inverted_index.fields, | 165 |
| abstract_inverted_index.include | 74 |
| abstract_inverted_index.issuing | 113 |
| abstract_inverted_index.kriging | 155 |
| abstract_inverted_index.machine | 66 |
| abstract_inverted_index.manner. | 49 |
| abstract_inverted_index.method. | 148 |
| abstract_inverted_index.methods | 71, 96 |
| abstract_inverted_index.network | 85 |
| abstract_inverted_index.nozzle. | 117 |
| abstract_inverted_index.points. | 177 |
| abstract_inverted_index.present | 23 |
| abstract_inverted_index.process | 76 |
| abstract_inverted_index.reduced | 27 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.spatial | 33, 218 |
| abstract_inverted_index.support | 88 |
| abstract_inverted_index.through | 100 |
| abstract_inverted_index.Gaussian | 75 |
| abstract_inverted_index.accuracy | 179 |
| abstract_inverted_index.accurate | 48 |
| abstract_inverted_index.advances | 54 |
| abstract_inverted_index.blending | 122 |
| abstract_inverted_index.dilution | 127 |
| abstract_inverted_index.examined | 99 |
| abstract_inverted_index.kriging, | 77 |
| abstract_inverted_index.learning | 67 |
| abstract_inverted_index.limited. | 213 |
| abstract_inverted_index.physical | 36, 164 |
| abstract_inverted_index.presents | 156 |
| abstract_inverted_index.problems | 43, 205 |
| abstract_inverted_index.proposes | 25 |
| abstract_inverted_index.sampling | 141 |
| abstract_inverted_index.specific | 207 |
| abstract_inverted_index.superior | 158 |
| abstract_inverted_index.training | 136, 196 |
| abstract_inverted_index.velocity | 169 |
| abstract_inverted_index.Numerical | 131 |
| abstract_inverted_index.carefully | 98 |
| abstract_inverted_index.database, | 197 |
| abstract_inverted_index.demanding | 10 |
| abstract_inverted_index.different | 94, 175 |
| abstract_inverted_index.efficient | 241 |
| abstract_inverted_index.emulation | 102, 216 |
| abstract_inverted_index.framework | 242 |
| abstract_inverted_index.generally | 8 |
| abstract_inverted_index.hindering | 13 |
| abstract_inverted_index.k-nearest | 81 |
| abstract_inverted_index.magnitude | 233 |
| abstract_inverted_index.numerical | 237 |
| abstract_inverted_index.performed | 134 |
| abstract_inverted_index.processes | 6 |
| abstract_inverted_index.products, | 173 |
| abstract_inverted_index.stringent | 190 |
| abstract_inverted_index.Parametric | 91 |
| abstract_inverted_index.associated | 209 |
| abstract_inverted_index.combustion | 5, 42, 106, 172 |
| abstract_inverted_index.determined | 143 |
| abstract_inverted_index.guaranteed | 201 |
| abstract_inverted_index.industrial | 18 |
| abstract_inverted_index.integrates | 52 |
| abstract_inverted_index.magnitude, | 170 |
| abstract_inverted_index.neighbors, | 82 |
| abstract_inverted_index.parametric | 26, 221 |
| abstract_inverted_index.polynomial | 79 |
| abstract_inverted_index.predicting | 161 |
| abstract_inverted_index.reduction, | 64 |
| abstract_inverted_index.turnaround | 225 |
| abstract_inverted_index.validation | 176 |
| abstract_inverted_index.(POD)-based | 62 |
| abstract_inverted_index.application | 16 |
| abstract_inverted_index.assimilated | 139 |
| abstract_inverted_index.considered. | 130 |
| abstract_inverted_index.encouraging | 186 |
| abstract_inverted_index.engineering | 204 |
| abstract_inverted_index.parameters, | 120 |
| abstract_inverted_index.performance | 159 |
| abstract_inverted_index.regression, | 80 |
| abstract_inverted_index.regression. | 90 |
| abstract_inverted_index.requirement | 191 |
| abstract_inverted_index.simulation, | 238 |
| abstract_inverted_index.simulations | 1, 132 |
| abstract_inverted_index.availability | 211 |
| abstract_inverted_index.conventional | 236 |
| abstract_inverted_index.experimental | 56 |
| abstract_inverted_index.facilitating | 239 |
| abstract_inverted_index.second-order | 78 |
| abstract_inverted_index.temperature, | 168 |
| abstract_inverted_index.High-fidelity | 0 |
| abstract_inverted_index.assimilation, | 60 |
| abstract_inverted_index.distributions | 34 |
| abstract_inverted_index.multi-species | 39 |
| abstract_inverted_index.optimization. | 21, 246 |
| abstract_inverted_index.steam-diluted | 108 |
| abstract_inverted_index.triple-coaxial | 116 |
| abstract_inverted_index.Latin-hypercube | 146 |
| abstract_inverted_index.computationally | 9 |
| abstract_inverted_index.time-consuming, | 12 |
| abstract_inverted_index.high-dimensional | 58 |
| abstract_inverted_index.(hydrogen/methane) | 124 |
| abstract_inverted_index.proper-orthogonal-decomposition | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |