PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.14808
Vision language models (VLMs) respond to user-crafted text prompts and visual inputs, and are applied to numerous real-world problems. VLMs integrate visual modalities with large language models (LLMs), which are well known to be prompt-sensitive. Hence, it is crucial to determine whether VLMs inherit this instability to varying prompts. We therefore investigate which prompt variations VLMs are most sensitive to and which VLMs are most agnostic to prompt variations. To this end, we introduce PARC (Prompt Analysis via Reliability and Calibration), a VLM prompt sensitivity analysis framework built on three pillars: (1) plausible prompt variations in both the language and vision domain, (2) a novel model reliability score with built-in guarantees, and (3) a calibration step that enables dataset- and prompt-spanning prompt variation analysis. Regarding prompt variations, PARC's evaluation shows that VLMs mirror LLM language prompt sensitivity in the vision domain, and most destructive variations change the expected answer. Regarding models, outstandingly robust VLMs among 22 evaluated models come from the InternVL2 family. We further find indications that prompt sensitivity is linked to training data. The code will be at https://github.com/NVlabs/PARC.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.14808
- https://arxiv.org/pdf/2506.14808
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415332906
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415332906Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.14808Digital Object Identifier
- Title
-
PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-03Full publication date if available
- Authors
-
Jenny Schmalfuß, Nadine Chang, Vibashan VS, Maying Shen, Andrés Bruhn, Jose M. ÁlvarezList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.14808Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.14808Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.14808Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415332906 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.14808 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.14808 |
| ids.openalex | https://openalex.org/W4415332906 |
| fwci | |
| type | preprint |
| title | PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12694 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.8174999952316284 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Categorization, perception, and language |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.14808 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.14808 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.14808 |
| locations[1].id | doi:10.48550/arxiv.2506.14808 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.14808 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5014373655 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8507-927X |
| authorships[0].author.display_name | Jenny Schmalfuß |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Schmalfuss, Jenny |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045190437 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4765-8478 |
| authorships[1].author.display_name | Nadine Chang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chang, Nadine |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004330920 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Vibashan VS |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | VS, Vibashan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079403120 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Maying Shen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shen, Maying |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5018641843 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0423-7411 |
| authorships[4].author.display_name | Andrés Bruhn |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bruhn, Andres |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101540588 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7535-6322 |
| authorships[5].author.display_name | Jose M. Álvarez |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Alvarez, Jose M. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.14808 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12694 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.8174999952316284 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Categorization, perception, and language |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.14808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.14808 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.14808 |
| primary_location.id | pmh:oai:arXiv.org:2506.14808 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.14808 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.14808 |
| publication_date | 2025-06-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 81, 103, 113 |
| abstract_inverted_index.22 | 155 |
| abstract_inverted_index.To | 69 |
| abstract_inverted_index.We | 49, 163 |
| abstract_inverted_index.at | 179 |
| abstract_inverted_index.be | 33, 178 |
| abstract_inverted_index.in | 95, 137 |
| abstract_inverted_index.is | 37, 170 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.on | 88 |
| abstract_inverted_index.to | 5, 15, 32, 39, 46, 59, 66, 172 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.(1) | 91 |
| abstract_inverted_index.(2) | 102 |
| abstract_inverted_index.(3) | 112 |
| abstract_inverted_index.LLM | 133 |
| abstract_inverted_index.The | 175 |
| abstract_inverted_index.VLM | 82 |
| abstract_inverted_index.and | 9, 12, 60, 79, 99, 111, 119, 141 |
| abstract_inverted_index.are | 13, 29, 56, 63 |
| abstract_inverted_index.the | 97, 138, 146, 160 |
| abstract_inverted_index.via | 77 |
| abstract_inverted_index.PARC | 74 |
| abstract_inverted_index.VLMs | 19, 42, 55, 62, 131, 153 |
| abstract_inverted_index.both | 96 |
| abstract_inverted_index.code | 176 |
| abstract_inverted_index.come | 158 |
| abstract_inverted_index.end, | 71 |
| abstract_inverted_index.find | 165 |
| abstract_inverted_index.from | 159 |
| abstract_inverted_index.most | 57, 64, 142 |
| abstract_inverted_index.step | 115 |
| abstract_inverted_index.text | 7 |
| abstract_inverted_index.that | 116, 130, 167 |
| abstract_inverted_index.this | 44, 70 |
| abstract_inverted_index.well | 30 |
| abstract_inverted_index.will | 177 |
| abstract_inverted_index.with | 23, 108 |
| abstract_inverted_index.among | 154 |
| abstract_inverted_index.built | 87 |
| abstract_inverted_index.data. | 174 |
| abstract_inverted_index.known | 31 |
| abstract_inverted_index.large | 24 |
| abstract_inverted_index.model | 105 |
| abstract_inverted_index.novel | 104 |
| abstract_inverted_index.score | 107 |
| abstract_inverted_index.shows | 129 |
| abstract_inverted_index.three | 89 |
| abstract_inverted_index.which | 28, 52, 61 |
| abstract_inverted_index.(VLMs) | 3 |
| abstract_inverted_index.Hence, | 35 |
| abstract_inverted_index.PARC's | 127 |
| abstract_inverted_index.Vision | 0 |
| abstract_inverted_index.change | 145 |
| abstract_inverted_index.linked | 171 |
| abstract_inverted_index.mirror | 132 |
| abstract_inverted_index.models | 2, 26, 157 |
| abstract_inverted_index.prompt | 53, 67, 83, 93, 121, 125, 135, 168 |
| abstract_inverted_index.robust | 152 |
| abstract_inverted_index.vision | 100, 139 |
| abstract_inverted_index.visual | 10, 21 |
| abstract_inverted_index.(LLMs), | 27 |
| abstract_inverted_index.(Prompt | 75 |
| abstract_inverted_index.answer. | 148 |
| abstract_inverted_index.applied | 14 |
| abstract_inverted_index.crucial | 38 |
| abstract_inverted_index.domain, | 101, 140 |
| abstract_inverted_index.enables | 117 |
| abstract_inverted_index.family. | 162 |
| abstract_inverted_index.further | 164 |
| abstract_inverted_index.inherit | 43 |
| abstract_inverted_index.inputs, | 11 |
| abstract_inverted_index.models, | 150 |
| abstract_inverted_index.prompts | 8 |
| abstract_inverted_index.respond | 4 |
| abstract_inverted_index.varying | 47 |
| abstract_inverted_index.whether | 41 |
| abstract_inverted_index.Analysis | 76 |
| abstract_inverted_index.agnostic | 65 |
| abstract_inverted_index.analysis | 85 |
| abstract_inverted_index.built-in | 109 |
| abstract_inverted_index.dataset- | 118 |
| abstract_inverted_index.expected | 147 |
| abstract_inverted_index.language | 1, 25, 98, 134 |
| abstract_inverted_index.numerous | 16 |
| abstract_inverted_index.pillars: | 90 |
| abstract_inverted_index.prompts. | 48 |
| abstract_inverted_index.training | 173 |
| abstract_inverted_index.InternVL2 | 161 |
| abstract_inverted_index.Regarding | 124, 149 |
| abstract_inverted_index.analysis. | 123 |
| abstract_inverted_index.determine | 40 |
| abstract_inverted_index.evaluated | 156 |
| abstract_inverted_index.framework | 86 |
| abstract_inverted_index.integrate | 20 |
| abstract_inverted_index.introduce | 73 |
| abstract_inverted_index.plausible | 92 |
| abstract_inverted_index.problems. | 18 |
| abstract_inverted_index.sensitive | 58 |
| abstract_inverted_index.therefore | 50 |
| abstract_inverted_index.variation | 122 |
| abstract_inverted_index.evaluation | 128 |
| abstract_inverted_index.modalities | 22 |
| abstract_inverted_index.real-world | 17 |
| abstract_inverted_index.variations | 54, 94, 144 |
| abstract_inverted_index.Reliability | 78 |
| abstract_inverted_index.calibration | 114 |
| abstract_inverted_index.destructive | 143 |
| abstract_inverted_index.guarantees, | 110 |
| abstract_inverted_index.indications | 166 |
| abstract_inverted_index.instability | 45 |
| abstract_inverted_index.investigate | 51 |
| abstract_inverted_index.reliability | 106 |
| abstract_inverted_index.sensitivity | 84, 136, 169 |
| abstract_inverted_index.variations, | 126 |
| abstract_inverted_index.variations. | 68 |
| abstract_inverted_index.user-crafted | 6 |
| abstract_inverted_index.Calibration), | 80 |
| abstract_inverted_index.outstandingly | 151 |
| abstract_inverted_index.prompt-spanning | 120 |
| abstract_inverted_index.prompt-sensitive. | 34 |
| abstract_inverted_index.https://github.com/NVlabs/PARC. | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |