Parity distribution and divisibility of Mex-related partition functions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.03647
Andrews and Newman introduced the mex-function $\text{mex}_{A,a}(λ)$ for an integer partition $λ$ of a positive integer $n$ as the smallest positive integer congruent to $a$ modulo $A$ that is not a part of $λ$. They then defined $p_{A,a}(n)$ to be the number of partitions $λ$ of $n$ satisfying $\text{mex}_{A,a}(λ)\equiv a\pmod{2A}$. They found the generating function for $p_{t,t}(n)$ and $p_{2t,t}(n)$ for any positive integer $t$, and studied their arithmetic properties for some small values of $t$. In this article, we study the partition function $p_{mt,t}(n)$ for all positive integers $m$ and $t$. We show that for sufficiently large $X$, the number of all positive integer $n\leq X$ such that $p_{mt,t}(n)$ is an even number is at least $\mathcal{O}(\sqrt{X/3})$ for all positive integers $m$ and $t$. We also prove that for sufficiently large $X$, the number of all positive integer $n\leq X$ such that $p_{mp,p}(n)$ is an odd number is at least $\mathcal{O}(\log \log X)$ for all $m\not \equiv 0\pmod{3}$ and all primes $p\equiv 1\pmod{3}$. Finally, we establish identities connecting the ordinary partition function to $p_{mt,t}(n)$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.03647
- https://arxiv.org/pdf/2303.03647
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323650787
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323650787Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.03647Digital Object Identifier
- Title
-
Parity distribution and divisibility of Mex-related partition functionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-07Full publication date if available
- Authors
-
Subhrajyoti Bhattacharyya, Rupam Barman, Ajit Singh, Apu Kumar SahaList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.03647Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.03647Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.03647Direct OA link when available
- Concepts
-
Combinatorics, Integer (computer science), Partition (number theory), Lambda, Divisibility rule, Mathematics, Function (biology), Modulo, Parity (physics), Physics, Particle physics, Optics, Computer science, Programming language, Evolutionary biology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323650787 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.03647 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.03647 |
| ids.openalex | https://openalex.org/W4323650787 |
| fwci | |
| type | preprint |
| title | Parity distribution and divisibility of Mex-related partition functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11428 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2602 |
| topics[0].subfield.display_name | Algebra and Number Theory |
| topics[0].display_name | Advanced Mathematical Identities |
| topics[1].id | https://openalex.org/T11166 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Analytic Number Theory Research |
| topics[2].id | https://openalex.org/T10948 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9847000241279602 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2607 |
| topics[2].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[2].display_name | Advanced Combinatorial Mathematics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114614502 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7912451028823853 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[0].display_name | Combinatorics |
| concepts[1].id | https://openalex.org/C97137487 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7600420713424683 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q729138 |
| concepts[1].display_name | Integer (computer science) |
| concepts[2].id | https://openalex.org/C42812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6731862425804138 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[2].display_name | Partition (number theory) |
| concepts[3].id | https://openalex.org/C2778113609 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6686967015266418 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10897 |
| concepts[3].display_name | Lambda |
| concepts[4].id | https://openalex.org/C9991821 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6653474569320679 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q858520 |
| concepts[4].display_name | Divisibility rule |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5669078230857849 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C14036430 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4845408499240875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[6].display_name | Function (biology) |
| concepts[7].id | https://openalex.org/C54732982 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45998141169548035 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1415345 |
| concepts[7].display_name | Modulo |
| concepts[8].id | https://openalex.org/C2777151079 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4119335412979126 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141160 |
| concepts[8].display_name | Parity (physics) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.24167495965957642 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C109214941 |
| concepts[10].level | 1 |
| concepts[10].score | 0.04856306314468384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[10].display_name | Particle physics |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C78458016 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[14].display_name | Evolutionary biology |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/combinatorics |
| keywords[0].score | 0.7912451028823853 |
| keywords[0].display_name | Combinatorics |
| keywords[1].id | https://openalex.org/keywords/integer |
| keywords[1].score | 0.7600420713424683 |
| keywords[1].display_name | Integer (computer science) |
| keywords[2].id | https://openalex.org/keywords/partition |
| keywords[2].score | 0.6731862425804138 |
| keywords[2].display_name | Partition (number theory) |
| keywords[3].id | https://openalex.org/keywords/lambda |
| keywords[3].score | 0.6686967015266418 |
| keywords[3].display_name | Lambda |
| keywords[4].id | https://openalex.org/keywords/divisibility-rule |
| keywords[4].score | 0.6653474569320679 |
| keywords[4].display_name | Divisibility rule |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.5669078230857849 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/function |
| keywords[6].score | 0.4845408499240875 |
| keywords[6].display_name | Function (biology) |
| keywords[7].id | https://openalex.org/keywords/modulo |
| keywords[7].score | 0.45998141169548035 |
| keywords[7].display_name | Modulo |
| keywords[8].id | https://openalex.org/keywords/parity |
| keywords[8].score | 0.4119335412979126 |
| keywords[8].display_name | Parity (physics) |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.24167495965957642 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/particle-physics |
| keywords[10].score | 0.04856306314468384 |
| keywords[10].display_name | Particle physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.03647 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.03647 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.03647 |
| locations[1].id | doi:10.48550/arxiv.2303.03647 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.03647 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5048324541 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4423-264X |
| authorships[0].author.display_name | Subhrajyoti Bhattacharyya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhattacharyya, Subhrajyoti |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047126432 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4480-1788 |
| authorships[1].author.display_name | Rupam Barman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Barman, Rupam |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075287641 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6093-3457 |
| authorships[2].author.display_name | Ajit Singh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Singh, Ajit |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5075411702 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3475-018X |
| authorships[3].author.display_name | Apu Kumar Saha |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Saha, Apu Kumar |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.03647 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parity distribution and divisibility of Mex-related partition functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11428 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2602 |
| primary_topic.subfield.display_name | Algebra and Number Theory |
| primary_topic.display_name | Advanced Mathematical Identities |
| related_works | https://openalex.org/W245125619, https://openalex.org/W2483454950, https://openalex.org/W1591666304, https://openalex.org/W2103818151, https://openalex.org/W3093741449, https://openalex.org/W2977722921, https://openalex.org/W2802582926, https://openalex.org/W3105141186, https://openalex.org/W2556813997, https://openalex.org/W1819753996 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.03647 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.03647 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.03647 |
| primary_location.id | pmh:oai:arXiv.org:2303.03647 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.03647 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.03647 |
| publication_date | 2023-03-07 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 30 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.We | 91, 124 |
| abstract_inverted_index.X$ | 105, 139 |
| abstract_inverted_index.an | 8, 110, 144 |
| abstract_inverted_index.as | 17 |
| abstract_inverted_index.at | 114, 148 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.is | 28, 109, 113, 143, 147 |
| abstract_inverted_index.of | 12, 32, 42, 45, 73, 100, 134 |
| abstract_inverted_index.to | 23, 38, 172 |
| abstract_inverted_index.we | 78, 164 |
| abstract_inverted_index.$A$ | 26 |
| abstract_inverted_index.$a$ | 24 |
| abstract_inverted_index.$m$ | 88, 121 |
| abstract_inverted_index.$n$ | 16, 46 |
| abstract_inverted_index.X)$ | 152 |
| abstract_inverted_index.all | 85, 101, 118, 135, 154, 159 |
| abstract_inverted_index.and | 1, 57, 64, 89, 122, 158 |
| abstract_inverted_index.any | 60 |
| abstract_inverted_index.for | 7, 55, 59, 69, 84, 94, 117, 128, 153 |
| abstract_inverted_index.not | 29 |
| abstract_inverted_index.odd | 145 |
| abstract_inverted_index.the | 4, 18, 40, 52, 80, 98, 132, 168 |
| abstract_inverted_index.$X$, | 97, 131 |
| abstract_inverted_index.$t$, | 63 |
| abstract_inverted_index.$t$. | 74, 90, 123 |
| abstract_inverted_index.$λ$ | 11, 44 |
| abstract_inverted_index.They | 34, 50 |
| abstract_inverted_index.\log | 151 |
| abstract_inverted_index.also | 125 |
| abstract_inverted_index.even | 111 |
| abstract_inverted_index.part | 31 |
| abstract_inverted_index.show | 92 |
| abstract_inverted_index.some | 70 |
| abstract_inverted_index.such | 106, 140 |
| abstract_inverted_index.that | 27, 93, 107, 127, 141 |
| abstract_inverted_index.then | 35 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.$λ$. | 33 |
| abstract_inverted_index.found | 51 |
| abstract_inverted_index.large | 96, 130 |
| abstract_inverted_index.least | 115, 149 |
| abstract_inverted_index.prove | 126 |
| abstract_inverted_index.small | 71 |
| abstract_inverted_index.study | 79 |
| abstract_inverted_index.their | 66 |
| abstract_inverted_index.$m\not | 155 |
| abstract_inverted_index.$n\leq | 104, 138 |
| abstract_inverted_index.Newman | 2 |
| abstract_inverted_index.\equiv | 156 |
| abstract_inverted_index.modulo | 25 |
| abstract_inverted_index.number | 41, 99, 112, 133, 146 |
| abstract_inverted_index.primes | 160 |
| abstract_inverted_index.values | 72 |
| abstract_inverted_index.Andrews | 0 |
| abstract_inverted_index.defined | 36 |
| abstract_inverted_index.integer | 9, 15, 21, 62, 103, 137 |
| abstract_inverted_index.studied | 65 |
| abstract_inverted_index.$p\equiv | 161 |
| abstract_inverted_index.Finally, | 163 |
| abstract_inverted_index.article, | 77 |
| abstract_inverted_index.function | 54, 82, 171 |
| abstract_inverted_index.integers | 87, 120 |
| abstract_inverted_index.ordinary | 169 |
| abstract_inverted_index.positive | 14, 20, 61, 86, 102, 119, 136 |
| abstract_inverted_index.smallest | 19 |
| abstract_inverted_index.congruent | 22 |
| abstract_inverted_index.establish | 165 |
| abstract_inverted_index.partition | 10, 81, 170 |
| abstract_inverted_index.0\pmod{3}$ | 157 |
| abstract_inverted_index.arithmetic | 67 |
| abstract_inverted_index.connecting | 167 |
| abstract_inverted_index.generating | 53 |
| abstract_inverted_index.identities | 166 |
| abstract_inverted_index.introduced | 3 |
| abstract_inverted_index.partitions | 43 |
| abstract_inverted_index.properties | 68 |
| abstract_inverted_index.satisfying | 47 |
| abstract_inverted_index.1\pmod{3}$. | 162 |
| abstract_inverted_index.$p_{A,a}(n)$ | 37 |
| abstract_inverted_index.$p_{t,t}(n)$ | 56 |
| abstract_inverted_index.a\pmod{2A}$. | 49 |
| abstract_inverted_index.mex-function | 5 |
| abstract_inverted_index.sufficiently | 95, 129 |
| abstract_inverted_index.$p_{2t,t}(n)$ | 58 |
| abstract_inverted_index.$p_{mp,p}(n)$ | 142 |
| abstract_inverted_index.$p_{mt,t}(n)$ | 83, 108 |
| abstract_inverted_index.$p_{mt,t}(n)$. | 173 |
| abstract_inverted_index.$\mathcal{O}(\log | 150 |
| abstract_inverted_index.$\text{mex}_{A,a}(λ)$ | 6 |
| abstract_inverted_index.$\mathcal{O}(\sqrt{X/3})$ | 116 |
| abstract_inverted_index.$\text{mex}_{A,a}(λ)\equiv | 48 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |