Partial feature reparameterization and shallow-level interaction for remote sensing object detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-14035-7
Remote sensing object detection has recently emerged as one of the challenging topics in the field of deep learning applications due to the demand for both high detection performance and computational efficiency. To address these problems, this study introduces an efficient one-stage object detector that is designed mainly for detecting objects on remote sensing images, which consists of several innovations. Firstly, an extraction block is proposed called PRepConvBlock that leverages reparameterization convolution and partial feature utilization to effectively reduce the complexity in convolution operations, allowing for the utilization of larger kernel sizes in order to form the longer interactions between features and significantly expand receptive fields. Secondly, a unique shallow multi-scale fusion framework called SB-FPN based on Bi-FPN that utilizes the cross-interaction between shallow scale and deeper scale while inheriting the bidirectional connection from Bi-FPN to enhance the visual representation of features. Lastly, a Shallow-level Optimized Reparameterization Architecture Detector (SORA-DET) is proposed by applying several introduced innovations. This object detector is designed for UAV remote sensing object detection tasks that employ up to four detection heads. As a result, our proposed detector obtains a competitive performance that outperforms most of the other large-size models and SOTA works. In detail, the SORA-DET achieves 39.3% mAP50 in the VisDrone2019 test set while reaching up to 84.0% mAP50 in the SeaDroneSeeV2 validation set. Furthermore, our proposed detector is smaller than nearly 88.1% in parameters and has an inference speed of only 5.4 ms compared to other large-scale one-stage detectors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-14035-7
- https://www.nature.com/articles/s41598-025-14035-7.pdf
- OA Status
- gold
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412988558
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412988558Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-14035-7Digital Object Identifier
- Title
-
Partial feature reparameterization and shallow-level interaction for remote sensing object detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-05Full publication date if available
- Authors
-
Minh Tai Pham Nguyen, Quoc Duy Nam Nguyen, Hoang Viet Anh Le, Minh Tran, Tadashi Nakano, Thi Hong TranList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-14035-7Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-14035-7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-14035-7.pdfDirect OA link when available
- Concepts
-
Feature (linguistics), Computer science, Object (grammar), Remote sensing, Object detection, Data mining, Artificial intelligence, Computer vision, Pattern recognition (psychology), Geology, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412988558 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-14035-7 |
| ids.doi | https://doi.org/10.1038/s41598-025-14035-7 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40764799 |
| ids.openalex | https://openalex.org/W4412988558 |
| fwci | 0.0 |
| type | article |
| title | Partial feature reparameterization and shallow-level interaction for remote sensing object detection |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 28629 |
| biblio.first_page | 28629 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6862191557884216 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.670444130897522 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4916859269142151 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.42385298013687134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.41897666454315186 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35694801807403564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3514464795589447 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.34397393465042114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3145386874675751 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20160043239593506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.6862191557884216 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.670444130897522 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.4916859269142151 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.42385298013687134 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.41897666454315186 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.35694801807403564 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3514464795589447 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.34397393465042114 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3145386874675751 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.20160043239593506 |
| keywords[9].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-14035-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-14035-7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-14035-7 |
| locations[1].id | pmid:40764799 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40764799 |
| locations[2].id | pmh:oai:doaj.org/article:30fc074a04454cb7879d0ad5666ea25c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-18 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/30fc074a04454cb7879d0ad5666ea25c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12325737 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12325737 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5079096537 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-7329-6262 |
| authorships[0].author.display_name | Minh Tai Pham Nguyen |
| authorships[0].countries | VN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210096063 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Advanced Program, Ho Chi Minh City Open University, Ho Chi Minh City, 700000, Vietnam. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I4210096063 |
| authorships[0].institutions[0].ror | https://ror.org/00tean533 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210096063 |
| authorships[0].institutions[0].country_code | VN |
| authorships[0].institutions[0].display_name | Ho Chi Minh City Open University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minh Tai Pham Nguyen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Advanced Program, Ho Chi Minh City Open University, Ho Chi Minh City, 700000, Vietnam. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5073097514 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-3164-9490 |
| authorships[1].author.display_name | Quoc Duy Nam Nguyen |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. [email protected]. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Quoc Duy Nam Nguyen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. [email protected]. |
| authorships[2].author.id | https://openalex.org/A5027015744 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-8295-0641 |
| authorships[2].author.display_name | Hoang Viet Anh Le |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. [email protected]. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hoang Viet Anh Le |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. [email protected]. |
| authorships[3].author.id | https://openalex.org/A5111231288 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-7711-9586 |
| authorships[3].author.display_name | Minh Tran |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210096063 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Ho Chi Minh City Open University, Ho Chi Minh City, 700000, Vietnam. |
| authorships[3].institutions[0].id | https://openalex.org/I4210096063 |
| authorships[3].institutions[0].ror | https://ror.org/00tean533 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210096063 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | Ho Chi Minh City Open University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Minh Khue Phan Tran |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Information Technology, Ho Chi Minh City Open University, Ho Chi Minh City, 700000, Vietnam. |
| authorships[4].author.id | https://openalex.org/A5005546566 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3354-8964 |
| authorships[4].author.display_name | Tadashi Nakano |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tadashi Nakano |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. |
| authorships[5].author.id | https://openalex.org/A5048660252 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2744-0079 |
| authorships[5].author.display_name | Thi Hong Tran |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Thi Hong Tran |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, 558-8585, Japan. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-14035-7.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Partial feature reparameterization and shallow-level interaction for remote sensing object detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2121524756, https://openalex.org/W782553550, https://openalex.org/W1987967678, https://openalex.org/W3147584709, https://openalex.org/W2633218168, https://openalex.org/W4235897794, https://openalex.org/W2737719445, https://openalex.org/W2059707233, https://openalex.org/W4292830139, https://openalex.org/W4319309705 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-14035-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-14035-7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-14035-7 |
| primary_location.id | doi:10.1038/s41598-025-14035-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-14035-7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-14035-7 |
| publication_date | 2025-08-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3210586215, https://openalex.org/W4323845235, https://openalex.org/W3138516171, https://openalex.org/W4386076325, https://openalex.org/W6739901393, https://openalex.org/W4384526044, https://openalex.org/W4313244825, https://openalex.org/W3140854437, https://openalex.org/W4402716415, https://openalex.org/W4386047745, https://openalex.org/W3167976421, https://openalex.org/W2963857746, https://openalex.org/W3034971973, https://openalex.org/W4386960913, https://openalex.org/W4380990561, https://openalex.org/W4385760871, https://openalex.org/W4387569390, https://openalex.org/W3035414587, https://openalex.org/W4401856303, https://openalex.org/W2884585870, https://openalex.org/W4403888247, https://openalex.org/W3205100603, https://openalex.org/W4401894250, https://openalex.org/W4402754006, https://openalex.org/W4396738701, https://openalex.org/W4224919677, https://openalex.org/W4402916971, https://openalex.org/W6836371346, https://openalex.org/W3216391081, https://openalex.org/W3097087434, https://openalex.org/W4406857905, https://openalex.org/W4406494843, https://openalex.org/W4403277343, https://openalex.org/W4403770406, https://openalex.org/W6868582632, https://openalex.org/W4280538787, https://openalex.org/W4403844164, https://openalex.org/W4406170347, https://openalex.org/W3119129845, https://openalex.org/W3159166099, https://openalex.org/W4380576476, https://openalex.org/W4399300294, https://openalex.org/W4401887491, https://openalex.org/W4401222986, https://openalex.org/W4407052161, https://openalex.org/W4401415788, https://openalex.org/W4389144601, https://openalex.org/W3088979451, https://openalex.org/W4401371145, https://openalex.org/W4401630652 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 107, 143, 177, 183 |
| abstract_inverted_index.As | 176 |
| abstract_inverted_index.In | 197 |
| abstract_inverted_index.To | 32 |
| abstract_inverted_index.an | 39, 61, 233 |
| abstract_inverted_index.as | 7 |
| abstract_inverted_index.by | 152 |
| abstract_inverted_index.in | 13, 81, 92, 204, 215, 229 |
| abstract_inverted_index.is | 45, 64, 150, 160, 224 |
| abstract_inverted_index.ms | 239 |
| abstract_inverted_index.of | 9, 16, 57, 88, 140, 189, 236 |
| abstract_inverted_index.on | 51, 116 |
| abstract_inverted_index.to | 21, 76, 94, 135, 172, 212, 241 |
| abstract_inverted_index.up | 171, 211 |
| abstract_inverted_index.5.4 | 238 |
| abstract_inverted_index.UAV | 163 |
| abstract_inverted_index.and | 29, 72, 101, 125, 194, 231 |
| abstract_inverted_index.due | 20 |
| abstract_inverted_index.for | 24, 48, 85, 162 |
| abstract_inverted_index.has | 4, 232 |
| abstract_inverted_index.one | 8 |
| abstract_inverted_index.our | 179, 221 |
| abstract_inverted_index.set | 208 |
| abstract_inverted_index.the | 10, 14, 22, 79, 86, 96, 120, 130, 137, 190, 199, 205, 216 |
| abstract_inverted_index.SOTA | 195 |
| abstract_inverted_index.This | 157 |
| abstract_inverted_index.both | 25 |
| abstract_inverted_index.deep | 17 |
| abstract_inverted_index.form | 95 |
| abstract_inverted_index.four | 173 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.high | 26 |
| abstract_inverted_index.most | 188 |
| abstract_inverted_index.only | 237 |
| abstract_inverted_index.set. | 219 |
| abstract_inverted_index.test | 207 |
| abstract_inverted_index.than | 226 |
| abstract_inverted_index.that | 44, 68, 118, 169, 186 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.39.3% | 202 |
| abstract_inverted_index.84.0% | 213 |
| abstract_inverted_index.88.1% | 228 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.block | 63 |
| abstract_inverted_index.field | 15 |
| abstract_inverted_index.mAP50 | 203, 214 |
| abstract_inverted_index.order | 93 |
| abstract_inverted_index.other | 191, 242 |
| abstract_inverted_index.scale | 124, 127 |
| abstract_inverted_index.sizes | 91 |
| abstract_inverted_index.speed | 235 |
| abstract_inverted_index.study | 37 |
| abstract_inverted_index.tasks | 168 |
| abstract_inverted_index.these | 34 |
| abstract_inverted_index.which | 55 |
| abstract_inverted_index.while | 128, 209 |
| abstract_inverted_index.Bi-FPN | 117, 134 |
| abstract_inverted_index.Remote | 0 |
| abstract_inverted_index.SB-FPN | 114 |
| abstract_inverted_index.called | 66, 113 |
| abstract_inverted_index.deeper | 126 |
| abstract_inverted_index.demand | 23 |
| abstract_inverted_index.employ | 170 |
| abstract_inverted_index.expand | 103 |
| abstract_inverted_index.fusion | 111 |
| abstract_inverted_index.heads. | 175 |
| abstract_inverted_index.kernel | 90 |
| abstract_inverted_index.larger | 89 |
| abstract_inverted_index.longer | 97 |
| abstract_inverted_index.mainly | 47 |
| abstract_inverted_index.models | 193 |
| abstract_inverted_index.nearly | 227 |
| abstract_inverted_index.object | 2, 42, 158, 166 |
| abstract_inverted_index.reduce | 78 |
| abstract_inverted_index.remote | 52, 164 |
| abstract_inverted_index.topics | 12 |
| abstract_inverted_index.unique | 108 |
| abstract_inverted_index.visual | 138 |
| abstract_inverted_index.works. | 196 |
| abstract_inverted_index.Lastly, | 142 |
| abstract_inverted_index.address | 33 |
| abstract_inverted_index.between | 99, 122 |
| abstract_inverted_index.detail, | 198 |
| abstract_inverted_index.emerged | 6 |
| abstract_inverted_index.enhance | 136 |
| abstract_inverted_index.feature | 74 |
| abstract_inverted_index.fields. | 105 |
| abstract_inverted_index.images, | 54 |
| abstract_inverted_index.objects | 50 |
| abstract_inverted_index.obtains | 182 |
| abstract_inverted_index.partial | 73 |
| abstract_inverted_index.result, | 178 |
| abstract_inverted_index.sensing | 1, 53, 165 |
| abstract_inverted_index.several | 58, 154 |
| abstract_inverted_index.shallow | 109, 123 |
| abstract_inverted_index.smaller | 225 |
| abstract_inverted_index.Detector | 148 |
| abstract_inverted_index.Firstly, | 60 |
| abstract_inverted_index.SORA-DET | 200 |
| abstract_inverted_index.achieves | 201 |
| abstract_inverted_index.allowing | 84 |
| abstract_inverted_index.applying | 153 |
| abstract_inverted_index.compared | 240 |
| abstract_inverted_index.consists | 56 |
| abstract_inverted_index.designed | 46, 161 |
| abstract_inverted_index.detector | 43, 159, 181, 223 |
| abstract_inverted_index.features | 100 |
| abstract_inverted_index.learning | 18 |
| abstract_inverted_index.proposed | 65, 151, 180, 222 |
| abstract_inverted_index.reaching | 210 |
| abstract_inverted_index.recently | 5 |
| abstract_inverted_index.utilizes | 119 |
| abstract_inverted_index.Optimized | 145 |
| abstract_inverted_index.Secondly, | 106 |
| abstract_inverted_index.detecting | 49 |
| abstract_inverted_index.detection | 3, 27, 167, 174 |
| abstract_inverted_index.efficient | 40 |
| abstract_inverted_index.features. | 141 |
| abstract_inverted_index.framework | 112 |
| abstract_inverted_index.inference | 234 |
| abstract_inverted_index.leverages | 69 |
| abstract_inverted_index.one-stage | 41, 244 |
| abstract_inverted_index.problems, | 35 |
| abstract_inverted_index.receptive | 104 |
| abstract_inverted_index.(SORA-DET) | 149 |
| abstract_inverted_index.complexity | 80 |
| abstract_inverted_index.connection | 132 |
| abstract_inverted_index.detectors. | 245 |
| abstract_inverted_index.extraction | 62 |
| abstract_inverted_index.inheriting | 129 |
| abstract_inverted_index.introduced | 155 |
| abstract_inverted_index.introduces | 38 |
| abstract_inverted_index.large-size | 192 |
| abstract_inverted_index.parameters | 230 |
| abstract_inverted_index.validation | 218 |
| abstract_inverted_index.challenging | 11 |
| abstract_inverted_index.competitive | 184 |
| abstract_inverted_index.convolution | 71, 82 |
| abstract_inverted_index.effectively | 77 |
| abstract_inverted_index.efficiency. | 31 |
| abstract_inverted_index.large-scale | 243 |
| abstract_inverted_index.multi-scale | 110 |
| abstract_inverted_index.operations, | 83 |
| abstract_inverted_index.outperforms | 187 |
| abstract_inverted_index.performance | 28, 185 |
| abstract_inverted_index.utilization | 75, 87 |
| abstract_inverted_index.Architecture | 147 |
| abstract_inverted_index.Furthermore, | 220 |
| abstract_inverted_index.VisDrone2019 | 206 |
| abstract_inverted_index.applications | 19 |
| abstract_inverted_index.innovations. | 59, 156 |
| abstract_inverted_index.interactions | 98 |
| abstract_inverted_index.PRepConvBlock | 67 |
| abstract_inverted_index.SeaDroneSeeV2 | 217 |
| abstract_inverted_index.Shallow-level | 144 |
| abstract_inverted_index.bidirectional | 131 |
| abstract_inverted_index.computational | 30 |
| abstract_inverted_index.significantly | 102 |
| abstract_inverted_index.representation | 139 |
| abstract_inverted_index.cross-interaction | 121 |
| abstract_inverted_index.Reparameterization | 146 |
| abstract_inverted_index.reparameterization | 70 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.33261469 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |