Partial-Label Learning with a Reject Option Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.00592
In real-world applications, one often encounters ambiguously labeled data, where different annotators assign conflicting class labels. Partial-label learning allows training classifiers in this weakly supervised setting, where state-of-the-art methods already show good predictive performance. However, even the best algorithms give incorrect predictions, which can have severe consequences when they impact actions or decisions. We propose a novel risk-consistent nearest-neighbor-based partial-label learning algorithm with a reject option, that is, the algorithm can reject unsure predictions. Extensive experiments on artificial and real-world datasets show that our method provides the best trade-off between the number and accuracy of non-rejected predictions when compared to our competitors, which use confidence thresholds for rejecting unsure predictions. When evaluated without the reject option, our nearest-neighbor-based approach also achieves competitive prediction performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.00592
- https://arxiv.org/pdf/2402.00592
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391506122
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391506122Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.00592Digital Object Identifier
- Title
-
Partial-Label Learning with a Reject OptionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-01Full publication date if available
- Authors
-
Tobias A. Fuchs, Florian Kalinke, Klemens BöhmList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.00592Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.00592Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.00592Direct OA link when available
- Concepts
-
Partial agonist, Computer science, Artificial intelligence, Medicine, Internal medicine, Receptor, AntagonistTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391506122 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.00592 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.00592 |
| ids.openalex | https://openalex.org/W4391506122 |
| fwci | |
| type | preprint |
| title | Partial-Label Learning with a Reject Option |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.875 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7825000286102295 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C58732023 |
| concepts[0].level | 4 |
| concepts[0].score | 0.4678020775318146 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q770260 |
| concepts[0].display_name | Partial agonist |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.46581366658210754 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3973933756351471 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.20766878128051758 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.1298462450504303 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C170493617 |
| concepts[5].level | 2 |
| concepts[5].score | 0.07958212494850159 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208467 |
| concepts[5].display_name | Receptor |
| concepts[6].id | https://openalex.org/C2776885963 |
| concepts[6].level | 3 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q245204 |
| concepts[6].display_name | Antagonist |
| keywords[0].id | https://openalex.org/keywords/partial-agonist |
| keywords[0].score | 0.4678020775318146 |
| keywords[0].display_name | Partial agonist |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.46581366658210754 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3973933756351471 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.20766878128051758 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.1298462450504303 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/receptor |
| keywords[5].score | 0.07958212494850159 |
| keywords[5].display_name | Receptor |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.00592 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.00592 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.00592 |
| locations[1].id | doi:10.48550/arxiv.2402.00592 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.00592 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013911322 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8812-9359 |
| authorships[0].author.display_name | Tobias A. Fuchs |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fuchs, Tobias |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054748088 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0443-6288 |
| authorships[1].author.display_name | Florian Kalinke |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kalinke, Florian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049768806 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1706-1913 |
| authorships[2].author.display_name | Klemens Böhm |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Böhm, Klemens |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.00592 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-03T00:00:00 |
| display_name | Partial-Label Learning with a Reject Option |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.875 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2352039749, https://openalex.org/W2390279801, https://openalex.org/W2050347178, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2350741829 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.00592 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.00592 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.00592 |
| primary_location.id | pmh:oai:arXiv.org:2402.00592 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.00592 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.00592 |
| publication_date | 2024-02-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 63 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 53 |
| abstract_inverted_index.in | 21 |
| abstract_inverted_index.of | 94 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 99 |
| abstract_inverted_index.and | 78, 92 |
| abstract_inverted_index.can | 43, 70 |
| abstract_inverted_index.for | 106 |
| abstract_inverted_index.is, | 67 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.our | 83, 100, 116 |
| abstract_inverted_index.the | 36, 68, 86, 90, 113 |
| abstract_inverted_index.use | 103 |
| abstract_inverted_index.When | 110 |
| abstract_inverted_index.also | 119 |
| abstract_inverted_index.best | 37, 87 |
| abstract_inverted_index.even | 35 |
| abstract_inverted_index.give | 39 |
| abstract_inverted_index.good | 31 |
| abstract_inverted_index.have | 44 |
| abstract_inverted_index.show | 30, 81 |
| abstract_inverted_index.that | 66, 82 |
| abstract_inverted_index.they | 48 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.when | 47, 97 |
| abstract_inverted_index.with | 62 |
| abstract_inverted_index.class | 14 |
| abstract_inverted_index.data, | 8 |
| abstract_inverted_index.novel | 56 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.where | 9, 26 |
| abstract_inverted_index.which | 42, 102 |
| abstract_inverted_index.allows | 18 |
| abstract_inverted_index.assign | 12 |
| abstract_inverted_index.impact | 49 |
| abstract_inverted_index.method | 84 |
| abstract_inverted_index.number | 91 |
| abstract_inverted_index.reject | 64, 71, 114 |
| abstract_inverted_index.severe | 45 |
| abstract_inverted_index.unsure | 72, 108 |
| abstract_inverted_index.weakly | 23 |
| abstract_inverted_index.actions | 50 |
| abstract_inverted_index.already | 29 |
| abstract_inverted_index.between | 89 |
| abstract_inverted_index.labeled | 7 |
| abstract_inverted_index.labels. | 15 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.option, | 65, 115 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.without | 112 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.accuracy | 93 |
| abstract_inverted_index.achieves | 120 |
| abstract_inverted_index.approach | 118 |
| abstract_inverted_index.compared | 98 |
| abstract_inverted_index.datasets | 80 |
| abstract_inverted_index.learning | 17, 60 |
| abstract_inverted_index.provides | 85 |
| abstract_inverted_index.setting, | 25 |
| abstract_inverted_index.training | 19 |
| abstract_inverted_index.Extensive | 74 |
| abstract_inverted_index.algorithm | 61, 69 |
| abstract_inverted_index.different | 10 |
| abstract_inverted_index.evaluated | 111 |
| abstract_inverted_index.incorrect | 40 |
| abstract_inverted_index.rejecting | 107 |
| abstract_inverted_index.trade-off | 88 |
| abstract_inverted_index.algorithms | 38 |
| abstract_inverted_index.annotators | 11 |
| abstract_inverted_index.artificial | 77 |
| abstract_inverted_index.confidence | 104 |
| abstract_inverted_index.decisions. | 52 |
| abstract_inverted_index.encounters | 5 |
| abstract_inverted_index.prediction | 122 |
| abstract_inverted_index.predictive | 32 |
| abstract_inverted_index.real-world | 1, 79 |
| abstract_inverted_index.supervised | 24 |
| abstract_inverted_index.thresholds | 105 |
| abstract_inverted_index.ambiguously | 6 |
| abstract_inverted_index.classifiers | 20 |
| abstract_inverted_index.competitive | 121 |
| abstract_inverted_index.conflicting | 13 |
| abstract_inverted_index.experiments | 75 |
| abstract_inverted_index.predictions | 96 |
| abstract_inverted_index.competitors, | 101 |
| abstract_inverted_index.consequences | 46 |
| abstract_inverted_index.non-rejected | 95 |
| abstract_inverted_index.performance. | 33, 123 |
| abstract_inverted_index.predictions, | 41 |
| abstract_inverted_index.predictions. | 73, 109 |
| abstract_inverted_index.Partial-label | 16 |
| abstract_inverted_index.applications, | 2 |
| abstract_inverted_index.partial-label | 59 |
| abstract_inverted_index.risk-consistent | 57 |
| abstract_inverted_index.state-of-the-art | 27 |
| abstract_inverted_index.nearest-neighbor-based | 58, 117 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |