Partially Observable Residual Reinforcement Learning for PV-Inverter-Based Voltage Control in Distribution Grids Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.19353
This paper introduces an efficient Residual Reinforcement Learning (RRL) framework for voltage control in active distribution grids. Voltage control remains a critical challenge in distribution grids, where conventional Reinforcement Learning (RL) methods often suffer from slow training convergence and inefficient exploration. To overcome these challenges, the proposed RRL approach learns a residual policy on top of a modified Sequential Droop Control (SDC) mechanism, ensuring faster convergence. Additionally, the framework introduces a Local Shared Linear (LSL) architecture for the Q-network and a Transformer-Encoder actor network, which collectively enhance overall performance. Unlike several existing approaches, the proposed method relies solely on inverters' measurements without requiring full state information of the power grid, rendering it more practical for real-world deployment. Simulation results validate the effectiveness of the RRL framework in achieving rapid convergence, minimizing active power curtailment, and ensuring reliable voltage regulation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.19353
- https://arxiv.org/pdf/2506.19353
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414683831
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414683831Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.19353Digital Object Identifier
- Title
-
Partially Observable Residual Reinforcement Learning for PV-Inverter-Based Voltage Control in Distribution GridsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-24Full publication date if available
- Authors
-
Sarra Bouchkati, Ramil Sabirov, Steffen Kortmann, Andreas UlbigList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.19353Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.19353Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.19353Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414683831 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.19353 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.19353 |
| ids.openalex | https://openalex.org/W4414683831 |
| fwci | |
| type | preprint |
| title | Partially Observable Residual Reinforcement Learning for PV-Inverter-Based Voltage Control in Distribution Grids |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10454 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Optimal Power Flow Distribution |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9945999979972839 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T10223 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Microgrid Control and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.19353 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.19353 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.19353 |
| locations[1].id | doi:10.48550/arxiv.2506.19353 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.19353 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5097330754 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sarra Bouchkati |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bouchkati, Sarra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022171699 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ramil Sabirov |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sabirov, Ramil |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111353318 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-2074-773X |
| authorships[2].author.display_name | Steffen Kortmann |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kortmann, Steffen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5074624526 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5834-1842 |
| authorships[3].author.display_name | Andreas Ulbig |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ulbig, Andreas |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.19353 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Partially Observable Residual Reinforcement Learning for PV-Inverter-Based Voltage Control in Distribution Grids |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10454 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Optimal Power Flow Distribution |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.19353 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.19353 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.19353 |
| primary_location.id | pmh:oai:arXiv.org:2506.19353 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.19353 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.19353 |
| publication_date | 2025-06-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 20, 50, 56, 70, 80 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.in | 13, 23, 126 |
| abstract_inverted_index.it | 111 |
| abstract_inverted_index.of | 55, 106, 122 |
| abstract_inverted_index.on | 53, 98 |
| abstract_inverted_index.RRL | 47, 124 |
| abstract_inverted_index.and | 38, 79, 134 |
| abstract_inverted_index.for | 10, 76, 114 |
| abstract_inverted_index.the | 45, 67, 77, 93, 107, 120, 123 |
| abstract_inverted_index.top | 54 |
| abstract_inverted_index.(RL) | 30 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.full | 103 |
| abstract_inverted_index.more | 112 |
| abstract_inverted_index.slow | 35 |
| abstract_inverted_index.(LSL) | 74 |
| abstract_inverted_index.(RRL) | 8 |
| abstract_inverted_index.(SDC) | 61 |
| abstract_inverted_index.Droop | 59 |
| abstract_inverted_index.Local | 71 |
| abstract_inverted_index.actor | 82 |
| abstract_inverted_index.grid, | 109 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.power | 108, 132 |
| abstract_inverted_index.rapid | 128 |
| abstract_inverted_index.state | 104 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.where | 26 |
| abstract_inverted_index.which | 84 |
| abstract_inverted_index.Linear | 73 |
| abstract_inverted_index.Shared | 72 |
| abstract_inverted_index.Unlike | 89 |
| abstract_inverted_index.active | 14, 131 |
| abstract_inverted_index.faster | 64 |
| abstract_inverted_index.grids, | 25 |
| abstract_inverted_index.grids. | 16 |
| abstract_inverted_index.learns | 49 |
| abstract_inverted_index.method | 95 |
| abstract_inverted_index.policy | 52 |
| abstract_inverted_index.relies | 96 |
| abstract_inverted_index.solely | 97 |
| abstract_inverted_index.suffer | 33 |
| abstract_inverted_index.Control | 60 |
| abstract_inverted_index.Voltage | 17 |
| abstract_inverted_index.control | 12, 18 |
| abstract_inverted_index.enhance | 86 |
| abstract_inverted_index.methods | 31 |
| abstract_inverted_index.overall | 87 |
| abstract_inverted_index.remains | 19 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.several | 90 |
| abstract_inverted_index.voltage | 11, 137 |
| abstract_inverted_index.without | 101 |
| abstract_inverted_index.Learning | 7, 29 |
| abstract_inverted_index.Residual | 5 |
| abstract_inverted_index.approach | 48 |
| abstract_inverted_index.critical | 21 |
| abstract_inverted_index.ensuring | 63, 135 |
| abstract_inverted_index.existing | 91 |
| abstract_inverted_index.modified | 57 |
| abstract_inverted_index.network, | 83 |
| abstract_inverted_index.overcome | 42 |
| abstract_inverted_index.proposed | 46, 94 |
| abstract_inverted_index.reliable | 136 |
| abstract_inverted_index.residual | 51 |
| abstract_inverted_index.training | 36 |
| abstract_inverted_index.validate | 119 |
| abstract_inverted_index.Q-network | 78 |
| abstract_inverted_index.achieving | 127 |
| abstract_inverted_index.challenge | 22 |
| abstract_inverted_index.efficient | 4 |
| abstract_inverted_index.framework | 9, 68, 125 |
| abstract_inverted_index.practical | 113 |
| abstract_inverted_index.rendering | 110 |
| abstract_inverted_index.requiring | 102 |
| abstract_inverted_index.Sequential | 58 |
| abstract_inverted_index.Simulation | 117 |
| abstract_inverted_index.introduces | 2, 69 |
| abstract_inverted_index.inverters' | 99 |
| abstract_inverted_index.mechanism, | 62 |
| abstract_inverted_index.minimizing | 130 |
| abstract_inverted_index.real-world | 115 |
| abstract_inverted_index.approaches, | 92 |
| abstract_inverted_index.challenges, | 44 |
| abstract_inverted_index.convergence | 37 |
| abstract_inverted_index.deployment. | 116 |
| abstract_inverted_index.inefficient | 39 |
| abstract_inverted_index.information | 105 |
| abstract_inverted_index.regulation. | 138 |
| abstract_inverted_index.architecture | 75 |
| abstract_inverted_index.collectively | 85 |
| abstract_inverted_index.conventional | 27 |
| abstract_inverted_index.convergence, | 129 |
| abstract_inverted_index.convergence. | 65 |
| abstract_inverted_index.curtailment, | 133 |
| abstract_inverted_index.distribution | 15, 24 |
| abstract_inverted_index.exploration. | 40 |
| abstract_inverted_index.measurements | 100 |
| abstract_inverted_index.performance. | 88 |
| abstract_inverted_index.Additionally, | 66 |
| abstract_inverted_index.Reinforcement | 6, 28 |
| abstract_inverted_index.effectiveness | 121 |
| abstract_inverted_index.Transformer-Encoder | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |