Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.rineng.2023.100951
Floods are one of the most catastrophic natural disasters. Water level forecasting is an essential method of avoiding floods and disaster preparedness. In recent years, models for predicting water levels have been developed using artificial intelligence techniques like the artificial neural network (ANN). It has been demonstrated that more advanced and sequenced-based deep learning techniques, like long short-term memory (LSTM) networks, are superior at forecasting hydrological data. However, historically, most LSTM hyperparameters were based on experience, which typically did not produce the best outcomes. The Particle Swarm Optimization (PSO) method was utilized to adjust the LSTM hyperparameter to increase the capacity to learn data sequence characteristics. Utilizing water level observation data from stations along Bangladesh's Brahmaputra, Ganges, and Meghna rivers, the model was utilized to estimate flood dynamics. The Nash Sutcliffe efficiency (NSE) coefficient, root mean square error (RMSE), and MAE were used to assess the model's performance, where PSO-LSTM model outperforms the ANN, PSO-ANN, and LSTM models in predicting water levels in all stations. The PSO-LSTM model provides improved prediction accuracy and stability and improves water level forecasting accuracy at varying lead times. The findings may aid in sustainable flood risk mitigation in the study region in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.rineng.2023.100951
- OA Status
- gold
- Cited By
- 77
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319939964
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319939964Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.rineng.2023.100951Digital Object Identifier
- Title
-
Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-10Full publication date if available
- Authors
-
Jannatul Ferdous Ruma, Mohammed Sarfaraz Gani Adnan, Ashraf Dewan, Rashedur M. RahmanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.rineng.2023.100951Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.rineng.2023.100951Direct OA link when available
- Concepts
-
Particle swarm optimization, Hyperparameter, Computer science, Mean squared error, Flood myth, Artificial neural network, Artificial intelligence, Recurrent neural network, Machine learning, Data mining, Statistics, Mathematics, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
77Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 28, 2024: 37, 2023: 12Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319939964 |
|---|---|
| doi | https://doi.org/10.1016/j.rineng.2023.100951 |
| ids.doi | https://doi.org/10.1016/j.rineng.2023.100951 |
| ids.openalex | https://openalex.org/W4319939964 |
| fwci | 12.61891606 |
| type | article |
| title | Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 100951 |
| biblio.first_page | 100951 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10930 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Flood Risk Assessment and Management |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list.value | 850 |
| apc_list.currency | USD |
| apc_list.value_usd | 850 |
| apc_paid.value | 850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 850 |
| concepts[0].id | https://openalex.org/C85617194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8088259696960449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[0].display_name | Particle swarm optimization |
| concepts[1].id | https://openalex.org/C8642999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6973323822021484 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[1].display_name | Hyperparameter |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6512335538864136 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C139945424 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6386477947235107 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[3].display_name | Mean squared error |
| concepts[4].id | https://openalex.org/C74256435 |
| concepts[4].level | 2 |
| concepts[4].score | 0.549601674079895 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[4].display_name | Flood myth |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5080466270446777 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49261003732681274 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C147168706 |
| concepts[7].level | 3 |
| concepts[7].score | 0.44823238253593445 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[7].display_name | Recurrent neural network |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4405132234096527 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36386850476264954 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2165425717830658 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10584422945976257 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09275570511817932 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C166957645 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[13].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[0].score | 0.8088259696960449 |
| keywords[0].display_name | Particle swarm optimization |
| keywords[1].id | https://openalex.org/keywords/hyperparameter |
| keywords[1].score | 0.6973323822021484 |
| keywords[1].display_name | Hyperparameter |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6512335538864136 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mean-squared-error |
| keywords[3].score | 0.6386477947235107 |
| keywords[3].display_name | Mean squared error |
| keywords[4].id | https://openalex.org/keywords/flood-myth |
| keywords[4].score | 0.549601674079895 |
| keywords[4].display_name | Flood myth |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5080466270446777 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.49261003732681274 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[7].score | 0.44823238253593445 |
| keywords[7].display_name | Recurrent neural network |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4405132234096527 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.36386850476264954 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.2165425717830658 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.10584422945976257 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.09275570511817932 |
| keywords[12].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1016/j.rineng.2023.100951 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210226253 |
| locations[0].source.issn | 2590-1230 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2590-1230 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Results in Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Results in Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.rineng.2023.100951 |
| locations[1].id | pmh:oai:bura.brunel.ac.uk:2438/28978 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401473 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Brunel University Research Archive (BURA) (Brunel University London) |
| locations[1].source.host_organization | https://openalex.org/I59433898 |
| locations[1].source.host_organization_name | Brunel University of London |
| locations[1].source.host_organization_lineage | https://openalex.org/I59433898 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://bura.brunel.ac.uk/handle/2438/28978 |
| locations[2].id | pmh:oai:doaj.org/article:9a1d43696df24ae8819263efc08e7db2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Results in Engineering, Vol 17, Iss , Pp 100951- (2023) |
| locations[2].landing_page_url | https://doaj.org/article/9a1d43696df24ae8819263efc08e7db2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077960225 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9294-5877 |
| authorships[0].author.display_name | Jannatul Ferdous Ruma |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157386601 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical & Computer Engineering, North South University, Dhaka, 1229, Bangladesh |
| authorships[0].institutions[0].id | https://openalex.org/I157386601 |
| authorships[0].institutions[0].ror | https://ror.org/05wdbfp45 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157386601 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | North South University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jannatul Ferdous Ruma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical & Computer Engineering, North South University, Dhaka, 1229, Bangladesh |
| authorships[1].author.id | https://openalex.org/A5059968037 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7276-1891 |
| authorships[1].author.display_name | Mohammed Sarfaraz Gani Adnan |
| authorships[1].countries | BD, GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I102782458 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Urban and Regional Planning, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[1].raw_affiliation_string | Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK |
| authorships[1].institutions[0].id | https://openalex.org/I102782458 |
| authorships[1].institutions[0].ror | https://ror.org/052qsay17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I102782458 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | Chittagong University of Engineering & Technology |
| authorships[1].institutions[1].id | https://openalex.org/I40120149 |
| authorships[1].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University of Oxford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohammed Sarfaraz Gani Adnan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Urban and Regional Planning, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh, Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK |
| authorships[2].author.id | https://openalex.org/A5088152786 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5594-5464 |
| authorships[2].author.display_name | Ashraf Dewan |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205640436 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Earth and Planetary Sciences, Curtin University, Perth, WA, 6102, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I205640436 |
| authorships[2].institutions[0].ror | https://ror.org/02n415q13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205640436 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Curtin University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashraf Dewan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Earth and Planetary Sciences, Curtin University, Perth, WA, 6102, Australia |
| authorships[3].author.id | https://openalex.org/A5071303493 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4514-6279 |
| authorships[3].author.display_name | Rashedur M. Rahman |
| authorships[3].countries | BD |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157386601 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical & Computer Engineering, North South University, Dhaka, 1229, Bangladesh |
| authorships[3].institutions[0].id | https://openalex.org/I157386601 |
| authorships[3].institutions[0].ror | https://ror.org/05wdbfp45 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157386601 |
| authorships[3].institutions[0].country_code | BD |
| authorships[3].institutions[0].display_name | North South University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rashedur M. Rahman |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Electrical & Computer Engineering, North South University, Dhaka, 1229, Bangladesh |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.rineng.2023.100951 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W2140186469, https://openalex.org/W4390421286, https://openalex.org/W4280563792, https://openalex.org/W4318719684, https://openalex.org/W4389724018, https://openalex.org/W4318559728, https://openalex.org/W3183136280, https://openalex.org/W2775233965, https://openalex.org/W3114716045, https://openalex.org/W2964006806 |
| cited_by_count | 77 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 28 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 37 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 12 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.rineng.2023.100951 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210226253 |
| best_oa_location.source.issn | 2590-1230 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2590-1230 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Results in Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Results in Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.rineng.2023.100951 |
| primary_location.id | doi:10.1016/j.rineng.2023.100951 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210226253 |
| primary_location.source.issn | 2590-1230 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2590-1230 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Results in Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Results in Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.rineng.2023.100951 |
| publication_date | 2023-02-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3135590425, https://openalex.org/W3015873955, https://openalex.org/W1990353999, https://openalex.org/W2069353120, https://openalex.org/W2077854648, https://openalex.org/W3175207647, https://openalex.org/W2280630627, https://openalex.org/W2012946021, https://openalex.org/W6746375179, https://openalex.org/W2005494734, https://openalex.org/W2089083771, https://openalex.org/W2080192658, https://openalex.org/W3090709955, https://openalex.org/W2985213799, https://openalex.org/W2103728465, https://openalex.org/W4283368966, https://openalex.org/W2167413304, https://openalex.org/W3169134223, https://openalex.org/W6764938360, https://openalex.org/W2981078235, https://openalex.org/W3066886056, https://openalex.org/W4206962773, https://openalex.org/W6805597506, https://openalex.org/W3103865021, https://openalex.org/W4228999572, https://openalex.org/W4210710680, https://openalex.org/W2955624945, https://openalex.org/W6809943709, https://openalex.org/W2004796972, https://openalex.org/W2901935134, https://openalex.org/W2737409460, https://openalex.org/W2152195021, https://openalex.org/W2965744895, https://openalex.org/W6799948944, https://openalex.org/W6844703610, https://openalex.org/W2064675550, https://openalex.org/W2998637666, https://openalex.org/W4296516438, https://openalex.org/W2951651174, https://openalex.org/W2328399833, https://openalex.org/W1598813349, https://openalex.org/W3009364545, https://openalex.org/W3198990722, https://openalex.org/W6664980504, https://openalex.org/W2999127782, https://openalex.org/W3013533105, https://openalex.org/W4213272346, https://openalex.org/W2552725425, https://openalex.org/W4223459511, https://openalex.org/W2953521532, https://openalex.org/W2058998445, https://openalex.org/W3193066514, https://openalex.org/W4298395323, https://openalex.org/W4221048067, https://openalex.org/W2771020011, https://openalex.org/W977067692 |
| referenced_works_count | 56 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.It | 43 |
| abstract_inverted_index.an | 13 |
| abstract_inverted_index.at | 63, 180 |
| abstract_inverted_index.in | 158, 162, 188, 193, 197 |
| abstract_inverted_index.is | 12 |
| abstract_inverted_index.of | 3, 16 |
| abstract_inverted_index.on | 74 |
| abstract_inverted_index.to | 92, 97, 101, 124, 143 |
| abstract_inverted_index.MAE | 140 |
| abstract_inverted_index.The | 84, 128, 165, 184 |
| abstract_inverted_index.aid | 187 |
| abstract_inverted_index.all | 163 |
| abstract_inverted_index.and | 19, 50, 117, 139, 155, 172, 174 |
| abstract_inverted_index.are | 1, 61 |
| abstract_inverted_index.did | 78 |
| abstract_inverted_index.for | 26 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.may | 186 |
| abstract_inverted_index.not | 79 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.the | 4, 38, 81, 94, 99, 120, 145, 152, 194, 198 |
| abstract_inverted_index.was | 90, 122 |
| abstract_inverted_index.ANN, | 153 |
| abstract_inverted_index.LSTM | 70, 95, 156 |
| abstract_inverted_index.Nash | 129 |
| abstract_inverted_index.been | 31, 45 |
| abstract_inverted_index.best | 82 |
| abstract_inverted_index.data | 103, 110 |
| abstract_inverted_index.deep | 52 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.lead | 182 |
| abstract_inverted_index.like | 37, 55 |
| abstract_inverted_index.long | 56 |
| abstract_inverted_index.mean | 135 |
| abstract_inverted_index.more | 48 |
| abstract_inverted_index.most | 5, 69 |
| abstract_inverted_index.risk | 191 |
| abstract_inverted_index.root | 134 |
| abstract_inverted_index.that | 47 |
| abstract_inverted_index.used | 142 |
| abstract_inverted_index.were | 72, 141 |
| abstract_inverted_index.(NSE) | 132 |
| abstract_inverted_index.(PSO) | 88 |
| abstract_inverted_index.Swarm | 86 |
| abstract_inverted_index.Water | 9 |
| abstract_inverted_index.along | 113 |
| abstract_inverted_index.based | 73 |
| abstract_inverted_index.data. | 66 |
| abstract_inverted_index.error | 137 |
| abstract_inverted_index.flood | 126, 190 |
| abstract_inverted_index.learn | 102 |
| abstract_inverted_index.level | 10, 108, 177 |
| abstract_inverted_index.model | 121, 150, 167 |
| abstract_inverted_index.study | 195 |
| abstract_inverted_index.using | 33 |
| abstract_inverted_index.water | 28, 107, 160, 176 |
| abstract_inverted_index.where | 148 |
| abstract_inverted_index.which | 76 |
| abstract_inverted_index.(ANN). | 42 |
| abstract_inverted_index.(LSTM) | 59 |
| abstract_inverted_index.Floods | 0 |
| abstract_inverted_index.Meghna | 118 |
| abstract_inverted_index.adjust | 93 |
| abstract_inverted_index.assess | 144 |
| abstract_inverted_index.floods | 18 |
| abstract_inverted_index.levels | 29, 161 |
| abstract_inverted_index.memory | 58 |
| abstract_inverted_index.method | 15, 89 |
| abstract_inverted_index.models | 25, 157 |
| abstract_inverted_index.neural | 40 |
| abstract_inverted_index.recent | 23 |
| abstract_inverted_index.region | 196 |
| abstract_inverted_index.square | 136 |
| abstract_inverted_index.times. | 183 |
| abstract_inverted_index.years, | 24 |
| abstract_inverted_index.(RMSE), | 138 |
| abstract_inverted_index.Ganges, | 116 |
| abstract_inverted_index.future. | 199 |
| abstract_inverted_index.model's | 146 |
| abstract_inverted_index.natural | 7 |
| abstract_inverted_index.network | 41 |
| abstract_inverted_index.produce | 80 |
| abstract_inverted_index.rivers, | 119 |
| abstract_inverted_index.varying | 181 |
| abstract_inverted_index.However, | 67 |
| abstract_inverted_index.PSO-ANN, | 154 |
| abstract_inverted_index.PSO-LSTM | 149, 166 |
| abstract_inverted_index.Particle | 85 |
| abstract_inverted_index.accuracy | 171, 179 |
| abstract_inverted_index.advanced | 49 |
| abstract_inverted_index.avoiding | 17 |
| abstract_inverted_index.capacity | 100 |
| abstract_inverted_index.disaster | 20 |
| abstract_inverted_index.estimate | 125 |
| abstract_inverted_index.findings | 185 |
| abstract_inverted_index.improved | 169 |
| abstract_inverted_index.improves | 175 |
| abstract_inverted_index.increase | 98 |
| abstract_inverted_index.learning | 53 |
| abstract_inverted_index.provides | 168 |
| abstract_inverted_index.sequence | 104 |
| abstract_inverted_index.stations | 112 |
| abstract_inverted_index.superior | 62 |
| abstract_inverted_index.utilized | 91, 123 |
| abstract_inverted_index.Sutcliffe | 130 |
| abstract_inverted_index.Utilizing | 106 |
| abstract_inverted_index.developed | 32 |
| abstract_inverted_index.dynamics. | 127 |
| abstract_inverted_index.essential | 14 |
| abstract_inverted_index.networks, | 60 |
| abstract_inverted_index.outcomes. | 83 |
| abstract_inverted_index.stability | 173 |
| abstract_inverted_index.stations. | 164 |
| abstract_inverted_index.typically | 77 |
| abstract_inverted_index.artificial | 34, 39 |
| abstract_inverted_index.disasters. | 8 |
| abstract_inverted_index.efficiency | 131 |
| abstract_inverted_index.mitigation | 192 |
| abstract_inverted_index.predicting | 27, 159 |
| abstract_inverted_index.prediction | 170 |
| abstract_inverted_index.short-term | 57 |
| abstract_inverted_index.techniques | 36 |
| abstract_inverted_index.experience, | 75 |
| abstract_inverted_index.forecasting | 11, 64, 178 |
| abstract_inverted_index.observation | 109 |
| abstract_inverted_index.outperforms | 151 |
| abstract_inverted_index.sustainable | 189 |
| abstract_inverted_index.techniques, | 54 |
| abstract_inverted_index.Bangladesh's | 114 |
| abstract_inverted_index.Brahmaputra, | 115 |
| abstract_inverted_index.Optimization | 87 |
| abstract_inverted_index.catastrophic | 6 |
| abstract_inverted_index.coefficient, | 133 |
| abstract_inverted_index.demonstrated | 46 |
| abstract_inverted_index.hydrological | 65 |
| abstract_inverted_index.intelligence | 35 |
| abstract_inverted_index.performance, | 147 |
| abstract_inverted_index.historically, | 68 |
| abstract_inverted_index.preparedness. | 21 |
| abstract_inverted_index.hyperparameter | 96 |
| abstract_inverted_index.hyperparameters | 71 |
| abstract_inverted_index.sequenced-based | 51 |
| abstract_inverted_index.characteristics. | 105 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5071303493 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I157386601 |
| citation_normalized_percentile.value | 0.99352029 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |