Parton labeling without matching: unveiling emergent labelling capabilities in regression models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1140/epjc/s10052-023-11809-z
Parton labeling methods are widely used when reconstructing collider events with top quarks or other massive particles. State-of-the-art techniques are based on machine learning and require training data with events that have been matched using simulations with truth information. In nature, there is no unique matching between partons and final state objects due to the properties of the strong force and due to acceptance effects. We propose a new approach to parton labeling that circumvents these challenges by recycling regression models. The final state objects that are most relevant for a regression model to predict the properties of a particular top quark are assigned to said parent particle without having any parton-matched training data. This approach is demonstrated using simulated events with top quarks and outperforms the widely-used $$\chi ^2$$ method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1140/epjc/s10052-023-11809-z
- https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdf
- OA Status
- diamond
- Cited By
- 5
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384405708
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384405708Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1140/epjc/s10052-023-11809-zDigital Object Identifier
- Title
-
Parton labeling without matching: unveiling emergent labelling capabilities in regression modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-15Full publication date if available
- Authors
-
Shikai Qiu, S. Han, X. Ju, Benjamin Nachman, Haichen WangList of authors in order
- Landing page
-
https://doi.org/10.1140/epjc/s10052-023-11809-zPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdfDirect OA link when available
- Concepts
-
Parton, Matching (statistics), Particle physics, Regression, Quark, Collider, Machine learning, Computer science, Artificial intelligence, Physics, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384405708 |
|---|---|
| doi | https://doi.org/10.1140/epjc/s10052-023-11809-z |
| ids.doi | https://doi.org/10.1140/epjc/s10052-023-11809-z |
| ids.openalex | https://openalex.org/W4384405708 |
| fwci | 0.39661334 |
| type | article |
| title | Parton labeling without matching: unveiling emergent labelling capabilities in regression models |
| biblio.issue | 7 |
| biblio.volume | 83 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10048 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Particle physics theoretical and experimental studies |
| topics[1].id | https://openalex.org/T10224 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9871000051498413 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Quantum Chromodynamics and Particle Interactions |
| topics[2].id | https://openalex.org/T10527 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9768000245094299 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | High-Energy Particle Collisions Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C180566339 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9100221395492554 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q117483 |
| concepts[0].display_name | Parton |
| concepts[1].id | https://openalex.org/C165064840 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6420125961303711 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[1].display_name | Matching (statistics) |
| concepts[2].id | https://openalex.org/C109214941 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6036320328712463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[2].display_name | Particle physics |
| concepts[3].id | https://openalex.org/C83546350 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5398264527320862 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[3].display_name | Regression |
| concepts[4].id | https://openalex.org/C7602139 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5188480615615845 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6718 |
| concepts[4].display_name | Quark |
| concepts[5].id | https://openalex.org/C152290109 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5174901485443115 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2033879 |
| concepts[5].display_name | Collider |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4718957841396332 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4553436040878296 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42661550641059875 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.40029117465019226 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17973065376281738 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1706484854221344 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/parton |
| keywords[0].score | 0.9100221395492554 |
| keywords[0].display_name | Parton |
| keywords[1].id | https://openalex.org/keywords/matching |
| keywords[1].score | 0.6420125961303711 |
| keywords[1].display_name | Matching (statistics) |
| keywords[2].id | https://openalex.org/keywords/particle-physics |
| keywords[2].score | 0.6036320328712463 |
| keywords[2].display_name | Particle physics |
| keywords[3].id | https://openalex.org/keywords/regression |
| keywords[3].score | 0.5398264527320862 |
| keywords[3].display_name | Regression |
| keywords[4].id | https://openalex.org/keywords/quark |
| keywords[4].score | 0.5188480615615845 |
| keywords[4].display_name | Quark |
| keywords[5].id | https://openalex.org/keywords/collider |
| keywords[5].score | 0.5174901485443115 |
| keywords[5].display_name | Collider |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4718957841396332 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4553436040878296 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.42661550641059875 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.40029117465019226 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.17973065376281738 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.1706484854221344 |
| keywords[11].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1140/epjc/s10052-023-11809-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S94052278 |
| locations[0].source.issn | 1434-6044, 1434-6052 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1434-6044 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The European Physical Journal C |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The European Physical Journal C |
| locations[0].landing_page_url | https://doi.org/10.1140/epjc/s10052-023-11809-z |
| locations[1].id | pmh:oai:doaj.org/article:1f3622a70b474aa9b19a079f7c35e9dc |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | European Physical Journal C: Particles and Fields, Vol 83, Iss 7, Pp 1-6 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/1f3622a70b474aa9b19a079f7c35e9dc |
| locations[2].id | pmh:oai:osti.gov:2007216 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/2007216 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061751169 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6376-5268 |
| authorships[0].author.display_name | Shikai Qiu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA |
| authorships[0].institutions[0].id | https://openalex.org/I95457486 |
| authorships[0].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Berkeley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shikai Qiu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA |
| authorships[1].author.id | https://openalex.org/A5100649312 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8383-7348 |
| authorships[1].author.display_name | S. Han |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[1].affiliations[0].raw_affiliation_string | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[1].institutions[0].id | https://openalex.org/I148283060 |
| authorships[1].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuo Han |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[2].author.id | https://openalex.org/A5030716890 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9745-1638 |
| authorships[2].author.display_name | X. Ju |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[2].affiliations[0].raw_affiliation_string | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[2].institutions[0].id | https://openalex.org/I148283060 |
| authorships[2].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiangyang Ju |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[3].author.id | https://openalex.org/A5054491740 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1024-0932 |
| authorships[3].author.display_name | Benjamin Nachman |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[3].affiliations[0].raw_affiliation_string | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[3].institutions[0].id | https://openalex.org/I148283060 |
| authorships[3].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Benjamin Nachman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[4].author.id | https://openalex.org/A5108137181 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Haichen Wang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[4].affiliations[0].raw_affiliation_string | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| authorships[4].institutions[0].id | https://openalex.org/I148283060 |
| authorships[4].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Haichen Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Parton labeling without matching: unveiling emergent labelling capabilities in regression models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10048 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Particle physics theoretical and experimental studies |
| related_works | https://openalex.org/W2552003420, https://openalex.org/W3201978198, https://openalex.org/W3215323502, https://openalex.org/W2093138509, https://openalex.org/W4387963852, https://openalex.org/W3104404927, https://openalex.org/W3109403596, https://openalex.org/W2021616098, https://openalex.org/W2323038648, https://openalex.org/W1537509865 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1140/epjc/s10052-023-11809-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S94052278 |
| best_oa_location.source.issn | 1434-6044, 1434-6052 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1434-6044 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The European Physical Journal C |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The European Physical Journal C |
| best_oa_location.landing_page_url | https://doi.org/10.1140/epjc/s10052-023-11809-z |
| primary_location.id | doi:10.1140/epjc/s10052-023-11809-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S94052278 |
| primary_location.source.issn | 1434-6044, 1434-6052 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1434-6044 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The European Physical Journal C |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The European Physical Journal C |
| primary_location.landing_page_url | https://doi.org/10.1140/epjc/s10052-023-11809-z |
| publication_date | 2023-07-15 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2596766270, https://openalex.org/W3006321348, https://openalex.org/W3047671489, https://openalex.org/W2963844004, https://openalex.org/W4284673612, https://openalex.org/W3168202165, https://openalex.org/W4381888453, https://openalex.org/W2060363676, https://openalex.org/W2107816296, https://openalex.org/W4381734930, https://openalex.org/W2110999179, https://openalex.org/W2148913369, https://openalex.org/W2125102738, https://openalex.org/W2100507804, https://openalex.org/W2165037242, https://openalex.org/W2212901559, https://openalex.org/W2965771657, https://openalex.org/W2777349738, https://openalex.org/W3108284800, https://openalex.org/W3102705115 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 68, 91, 99 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.by | 78 |
| abstract_inverted_index.is | 43, 117 |
| abstract_inverted_index.no | 44 |
| abstract_inverted_index.of | 57, 98 |
| abstract_inverted_index.on | 22 |
| abstract_inverted_index.or | 14 |
| abstract_inverted_index.to | 54, 63, 71, 94, 105 |
| abstract_inverted_index.The | 82 |
| abstract_inverted_index.and | 25, 49, 61, 125 |
| abstract_inverted_index.any | 111 |
| abstract_inverted_index.are | 4, 20, 87, 103 |
| abstract_inverted_index.due | 53, 62 |
| abstract_inverted_index.for | 90 |
| abstract_inverted_index.new | 69 |
| abstract_inverted_index.the | 55, 58, 96, 127 |
| abstract_inverted_index.top | 12, 101, 123 |
| abstract_inverted_index.This | 115 |
| abstract_inverted_index.^2$$ | 130 |
| abstract_inverted_index.been | 33 |
| abstract_inverted_index.data | 28 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.most | 88 |
| abstract_inverted_index.said | 106 |
| abstract_inverted_index.that | 31, 74, 86 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.when | 7 |
| abstract_inverted_index.with | 11, 29, 37, 122 |
| abstract_inverted_index.based | 21 |
| abstract_inverted_index.data. | 114 |
| abstract_inverted_index.final | 50, 83 |
| abstract_inverted_index.force | 60 |
| abstract_inverted_index.model | 93 |
| abstract_inverted_index.other | 15 |
| abstract_inverted_index.quark | 102 |
| abstract_inverted_index.state | 51, 84 |
| abstract_inverted_index.there | 42 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.truth | 38 |
| abstract_inverted_index.using | 35, 119 |
| abstract_inverted_index.$$\chi | 129 |
| abstract_inverted_index.Parton | 1 |
| abstract_inverted_index.events | 10, 30, 121 |
| abstract_inverted_index.having | 110 |
| abstract_inverted_index.parent | 107 |
| abstract_inverted_index.parton | 72 |
| abstract_inverted_index.quarks | 13, 124 |
| abstract_inverted_index.strong | 59 |
| abstract_inverted_index.unique | 45 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.between | 47 |
| abstract_inverted_index.machine | 23 |
| abstract_inverted_index.massive | 16 |
| abstract_inverted_index.matched | 34 |
| abstract_inverted_index.method. | 138 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.models. | 81 |
| abstract_inverted_index.nature, | 41 |
| abstract_inverted_index.objects | 52, 85 |
| abstract_inverted_index.partons | 48 |
| abstract_inverted_index.predict | 95 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.require | 26 |
| abstract_inverted_index.without | 109 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.approach | 70, 116 |
| abstract_inverted_index.assigned | 104 |
| abstract_inverted_index.collider | 9 |
| abstract_inverted_index.effects. | 65 |
| abstract_inverted_index.labeling | 2, 73 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.matching | 46 |
| abstract_inverted_index.particle | 108 |
| abstract_inverted_index.relevant | 89 |
| abstract_inverted_index.training | 27, 113 |
| abstract_inverted_index.<mml:math | 131 |
| abstract_inverted_index.recycling | 79 |
| abstract_inverted_index.simulated | 120 |
| abstract_inverted_index.<mml:msup> | 133 |
| abstract_inverted_index.acceptance | 64 |
| abstract_inverted_index.challenges | 77 |
| abstract_inverted_index.particles. | 17 |
| abstract_inverted_index.particular | 100 |
| abstract_inverted_index.properties | 56, 97 |
| abstract_inverted_index.regression | 80, 92 |
| abstract_inverted_index.techniques | 19 |
| abstract_inverted_index.</mml:math> | 137 |
| abstract_inverted_index.</mml:msup> | 136 |
| abstract_inverted_index.circumvents | 75 |
| abstract_inverted_index.outperforms | 126 |
| abstract_inverted_index.simulations | 36 |
| abstract_inverted_index.widely-used | 128 |
| abstract_inverted_index.demonstrated | 118 |
| abstract_inverted_index.information. | 39 |
| abstract_inverted_index.parton-matched | 112 |
| abstract_inverted_index.reconstructing | 8 |
| abstract_inverted_index.State-of-the-art | 18 |
| abstract_inverted_index.<mml:mn>2</mml:mn> | 135 |
| abstract_inverted_index.<mml:mi>χ</mml:mi> | 134 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"> | 132 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.92210947 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |