PATCHOUT: Adversarial Patch Detection and Localization using Semantic Consistency Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s11063-025-11775-5
Computer vision systems are actively deployed in safety-critical applications such as autonomous vehicles. Real-world adversarial patches are capable of compromising the artificial intelligence (AI) systems with catastrophic outcomes. Existing defenses against patch attacks are based on identifying neurons, features, or gradients of high intensity. However, these defenses are vulnerable to weaker attacks that have less obvious attack signatures. In this paper, we propose the PATCHOUT framework that detects and locates adversarial patches using semantic consistency. Within patch detection, the key insight is that the top class predictions for an entity are semantically consistent for benign images, whereas they are inconsistent for attacked images. Within patch localization, it is observed that patches are semantically consistent with a coarse grained segmentation of the image. This allows the PATCHOUT framework to detect and remove adversarial patches using a class consistency checker as well as image segmentation, attribution analysis, and image restoration techniques. The experimental evaluation demonstrates that PATCHOUT can detect a broad range of adversarial patches with over 90% accuracy. The framework achieves 20% higher accuracy than other defenses. The framework is also evaluated against unseen attacks and adaptive attacks, reducing the success rate of adaptive attacks from 56% to 24%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11063-025-11775-5
- https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410931970
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410931970Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11063-025-11775-5Digital Object Identifier
- Title
-
PATCHOUT: Adversarial Patch Detection and Localization using Semantic ConsistencyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-01Full publication date if available
- Authors
-
Dominic A. Simon, S. K. Jha, Rickard EwetzList of authors in order
- Landing page
-
https://doi.org/10.1007/s11063-025-11775-5Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdfDirect OA link when available
- Concepts
-
Computational intelligence, Adversarial system, Consistency (knowledge bases), Artificial intelligence, Computer science, Natural language processing, Pattern recognition (psychology), MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410931970 |
|---|---|
| doi | https://doi.org/10.1007/s11063-025-11775-5 |
| ids.doi | https://doi.org/10.1007/s11063-025-11775-5 |
| ids.openalex | https://openalex.org/W4410931970 |
| fwci | 4.81974515 |
| type | article |
| title | PATCHOUT: Adversarial Patch Detection and Localization using Semantic Consistency |
| awards[0].id | https://openalex.org/G4161003889 |
| awards[0].funder_id | https://openalex.org/F4320332180 |
| awards[0].display_name | |
| awards[0].funder_award_id | FA87502320501 |
| awards[0].funder_display_name | Defense Advanced Research Projects Agency |
| biblio.issue | 3 |
| biblio.volume | 57 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12357 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9951000213623047 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Media Forensic Detection |
| funders[0].id | https://openalex.org/F4320332180 |
| funders[0].ror | https://ror.org/02caytj08 |
| funders[0].display_name | Defense Advanced Research Projects Agency |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C139502532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6802294254302979 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[0].display_name | Computational intelligence |
| concepts[1].id | https://openalex.org/C37736160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5904746055603027 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[1].display_name | Adversarial system |
| concepts[2].id | https://openalex.org/C2776436953 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5604483485221863 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[2].display_name | Consistency (knowledge bases) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5178052186965942 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5165549516677856 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39763206243515015 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3881432116031647 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3200220465660095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computational-intelligence |
| keywords[0].score | 0.6802294254302979 |
| keywords[0].display_name | Computational intelligence |
| keywords[1].id | https://openalex.org/keywords/adversarial-system |
| keywords[1].score | 0.5904746055603027 |
| keywords[1].display_name | Adversarial system |
| keywords[2].id | https://openalex.org/keywords/consistency |
| keywords[2].score | 0.5604483485221863 |
| keywords[2].display_name | Consistency (knowledge bases) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5178052186965942 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5165549516677856 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.39763206243515015 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3881432116031647 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3200220465660095 |
| keywords[7].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/s11063-025-11775-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S140962798 |
| locations[0].source.issn | 1370-4621, 1573-773X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1370-4621 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neural Processing Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neural Processing Letters |
| locations[0].landing_page_url | https://doi.org/10.1007/s11063-025-11775-5 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005032482 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-9122-1526 |
| authorships[0].author.display_name | Dominic A. Simon |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dominic Simon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072303405 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4853-6085 |
| authorships[1].author.display_name | S. K. Jha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sumit Jha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014892277 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4183-6926 |
| authorships[2].author.display_name | Rickard Ewetz |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rickard Ewetz |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PATCHOUT: Adversarial Patch Detection and Localization using Semantic Consistency |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2502115930, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3126451824, https://openalex.org/W1561927205, https://openalex.org/W3191453585, https://openalex.org/W4297672492, https://openalex.org/W4310988119, https://openalex.org/W4285226279, https://openalex.org/W4288019534 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11063-025-11775-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S140962798 |
| best_oa_location.source.issn | 1370-4621, 1573-773X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1370-4621 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neural Processing Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neural Processing Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11063-025-11775-5 |
| primary_location.id | doi:10.1007/s11063-025-11775-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S140962798 |
| primary_location.source.issn | 1370-4621, 1573-773X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1370-4621 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neural Processing Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-025-11775-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neural Processing Letters |
| primary_location.landing_page_url | https://doi.org/10.1007/s11063-025-11775-5 |
| publication_date | 2025-06-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4297814571, https://openalex.org/W4294517337, https://openalex.org/W3204155906, https://openalex.org/W3108072218, https://openalex.org/W4411244505, https://openalex.org/W2963302614, https://openalex.org/W2902867332, https://openalex.org/W3097269597, https://openalex.org/W3202052293, https://openalex.org/W4226232092, https://openalex.org/W3114686421, https://openalex.org/W4386071495, https://openalex.org/W2117539524, https://openalex.org/W4285607042, https://openalex.org/W3094984771, https://openalex.org/W4384948728, https://openalex.org/W4404819869, https://openalex.org/W4390874575, https://openalex.org/W2963382180, https://openalex.org/W3187210262, https://openalex.org/W4393159356, https://openalex.org/W6600459194, https://openalex.org/W3128170672, https://openalex.org/W2949650786, https://openalex.org/W2982083293, https://openalex.org/W4400189280, https://openalex.org/W4319301003, https://openalex.org/W2962858109, https://openalex.org/W2612690371, https://openalex.org/W2990138404 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 116, 135, 158 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 11, 139, 141 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.is | 82, 108, 179 |
| abstract_inverted_index.it | 107 |
| abstract_inverted_index.of | 19, 42, 120, 161, 192 |
| abstract_inverted_index.on | 36 |
| abstract_inverted_index.or | 40 |
| abstract_inverted_index.to | 50, 128, 197 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.20% | 171 |
| abstract_inverted_index.56% | 196 |
| abstract_inverted_index.90% | 166 |
| abstract_inverted_index.The | 150, 168, 177 |
| abstract_inverted_index.and | 69, 130, 146, 185 |
| abstract_inverted_index.are | 4, 17, 34, 48, 91, 99, 112 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.for | 88, 94, 101 |
| abstract_inverted_index.key | 80 |
| abstract_inverted_index.the | 21, 64, 79, 84, 121, 125, 189 |
| abstract_inverted_index.top | 85 |
| abstract_inverted_index.(AI) | 24 |
| abstract_inverted_index.24%. | 198 |
| abstract_inverted_index.This | 123 |
| abstract_inverted_index.also | 180 |
| abstract_inverted_index.from | 195 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.high | 43 |
| abstract_inverted_index.less | 55 |
| abstract_inverted_index.over | 165 |
| abstract_inverted_index.rate | 191 |
| abstract_inverted_index.such | 10 |
| abstract_inverted_index.than | 174 |
| abstract_inverted_index.that | 53, 67, 83, 110, 154 |
| abstract_inverted_index.they | 98 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.well | 140 |
| abstract_inverted_index.with | 26, 115, 164 |
| abstract_inverted_index.based | 35 |
| abstract_inverted_index.broad | 159 |
| abstract_inverted_index.class | 86, 136 |
| abstract_inverted_index.image | 142, 147 |
| abstract_inverted_index.other | 175 |
| abstract_inverted_index.patch | 32, 77, 105 |
| abstract_inverted_index.range | 160 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.using | 73, 134 |
| abstract_inverted_index.Within | 76, 104 |
| abstract_inverted_index.allows | 124 |
| abstract_inverted_index.attack | 57 |
| abstract_inverted_index.benign | 95 |
| abstract_inverted_index.coarse | 117 |
| abstract_inverted_index.detect | 129, 157 |
| abstract_inverted_index.entity | 90 |
| abstract_inverted_index.higher | 172 |
| abstract_inverted_index.image. | 122 |
| abstract_inverted_index.paper, | 61 |
| abstract_inverted_index.remove | 131 |
| abstract_inverted_index.unseen | 183 |
| abstract_inverted_index.vision | 2 |
| abstract_inverted_index.weaker | 51 |
| abstract_inverted_index.against | 31, 182 |
| abstract_inverted_index.attacks | 33, 52, 184, 194 |
| abstract_inverted_index.capable | 18 |
| abstract_inverted_index.checker | 138 |
| abstract_inverted_index.detects | 68 |
| abstract_inverted_index.grained | 118 |
| abstract_inverted_index.images, | 96 |
| abstract_inverted_index.images. | 103 |
| abstract_inverted_index.insight | 81 |
| abstract_inverted_index.locates | 70 |
| abstract_inverted_index.obvious | 56 |
| abstract_inverted_index.patches | 16, 72, 111, 133, 163 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.success | 190 |
| abstract_inverted_index.systems | 3, 25 |
| abstract_inverted_index.whereas | 97 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Computer | 1 |
| abstract_inverted_index.Existing | 29 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.PATCHOUT | 65, 126, 155 |
| abstract_inverted_index.accuracy | 173 |
| abstract_inverted_index.achieves | 170 |
| abstract_inverted_index.actively | 5 |
| abstract_inverted_index.adaptive | 186, 193 |
| abstract_inverted_index.attacked | 102 |
| abstract_inverted_index.attacks, | 187 |
| abstract_inverted_index.defenses | 30, 47 |
| abstract_inverted_index.deployed | 6 |
| abstract_inverted_index.neurons, | 38 |
| abstract_inverted_index.observed | 109 |
| abstract_inverted_index.reducing | 188 |
| abstract_inverted_index.semantic | 74 |
| abstract_inverted_index.accuracy. | 167 |
| abstract_inverted_index.analysis, | 145 |
| abstract_inverted_index.defenses. | 176 |
| abstract_inverted_index.evaluated | 181 |
| abstract_inverted_index.features, | 39 |
| abstract_inverted_index.framework | 66, 127, 169, 178 |
| abstract_inverted_index.gradients | 41 |
| abstract_inverted_index.outcomes. | 28 |
| abstract_inverted_index.vehicles. | 13 |
| abstract_inverted_index.Real-world | 14 |
| abstract_inverted_index.artificial | 22 |
| abstract_inverted_index.autonomous | 12 |
| abstract_inverted_index.consistent | 93, 114 |
| abstract_inverted_index.detection, | 78 |
| abstract_inverted_index.evaluation | 152 |
| abstract_inverted_index.intensity. | 44 |
| abstract_inverted_index.vulnerable | 49 |
| abstract_inverted_index.adversarial | 15, 71, 132, 162 |
| abstract_inverted_index.attribution | 144 |
| abstract_inverted_index.consistency | 137 |
| abstract_inverted_index.identifying | 37 |
| abstract_inverted_index.predictions | 87 |
| abstract_inverted_index.restoration | 148 |
| abstract_inverted_index.signatures. | 58 |
| abstract_inverted_index.techniques. | 149 |
| abstract_inverted_index.applications | 9 |
| abstract_inverted_index.catastrophic | 27 |
| abstract_inverted_index.compromising | 20 |
| abstract_inverted_index.consistency. | 75 |
| abstract_inverted_index.demonstrates | 153 |
| abstract_inverted_index.experimental | 151 |
| abstract_inverted_index.inconsistent | 100 |
| abstract_inverted_index.intelligence | 23 |
| abstract_inverted_index.segmentation | 119 |
| abstract_inverted_index.semantically | 92, 113 |
| abstract_inverted_index.localization, | 106 |
| abstract_inverted_index.segmentation, | 143 |
| abstract_inverted_index.safety-critical | 8 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.94286474 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |