Path-following methods for Maximum a Posteriori estimators in Bayesian hierarchical models: How estimates depend on hyperparameters Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.07113
Maximum a posteriori (MAP) estimation, like all Bayesian methods, depends on prior assumptions. These assumptions are often chosen to promote specific features in the recovered estimate. The form of the chosen prior determines the shape of the posterior distribution, thus the behavior of the estimator and complexity of the associated optimization problem. Here, we consider a family of Gaussian hierarchical models with generalized gamma hyperpriors designed to promote sparsity in linear inverse problems. By varying the hyperparameters, we move continuously between priors that act as smoothed $\ell_p$ penalties with flexible $p$, smoothing, and scale. We then introduce a predictor-corrector method that tracks MAP solution paths as the hyperparameters vary. Path following allows a user to explore the space of possible MAP solutions and to test the sensitivity of solutions to changes in the prior assumptions. By tracing paths from a convex region to a non-convex region, the user can find local minimizers in strongly sparsity promoting regimes that are consistent with a convex relaxation derived using related prior assumptions. We show experimentally that these solutions. are less error prone than direct optimization of the non-convex problem.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.07113
- https://arxiv.org/pdf/2211.07113
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309133645
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309133645Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.07113Digital Object Identifier
- Title
-
Path-following methods for Maximum a Posteriori estimators in Bayesian hierarchical models: How estimates depend on hyperparametersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-14Full publication date if available
- Authors
-
Zilai Si, Yucong Liu, Alexander StrangList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.07113Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.07113Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.07113Direct OA link when available
- Concepts
-
Hyperparameter, Maximum a posteriori estimation, Prior probability, Mathematical optimization, Estimator, Smoothing, Mathematics, Bayesian probability, Gaussian, Inverse problem, Algorithm, Computer science, Applied mathematics, Statistics, Maximum likelihood, Physics, Quantum mechanics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309133645 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.07113 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.07113 |
| ids.openalex | https://openalex.org/W4309133645 |
| fwci | |
| type | preprint |
| title | Path-following methods for Maximum a Posteriori estimators in Bayesian hierarchical models: How estimates depend on hyperparameters |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9363609552383423 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C9810830 |
| concepts[1].level | 3 |
| concepts[1].score | 0.780673623085022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q635384 |
| concepts[1].display_name | Maximum a posteriori estimation |
| concepts[2].id | https://openalex.org/C177769412 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7395907044410706 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[2].display_name | Prior probability |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.601840615272522 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C185429906 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5694802403450012 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[4].display_name | Estimator |
| concepts[5].id | https://openalex.org/C3770464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5619271993637085 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[5].display_name | Smoothing |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5391642451286316 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C107673813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5096988677978516 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[7].display_name | Bayesian probability |
| concepts[8].id | https://openalex.org/C163716315 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44933295249938965 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[8].display_name | Gaussian |
| concepts[9].id | https://openalex.org/C135252773 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4415615499019623 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[9].display_name | Inverse problem |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4057849049568176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.39180880784988403 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C28826006 |
| concepts[12].level | 1 |
| concepts[12].score | 0.356436163187027 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[12].display_name | Applied mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16824990510940552 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C49781872 |
| concepts[14].level | 2 |
| concepts[14].score | 0.08313629031181335 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[14].display_name | Maximum likelihood |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.9363609552383423 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/maximum-a-posteriori-estimation |
| keywords[1].score | 0.780673623085022 |
| keywords[1].display_name | Maximum a posteriori estimation |
| keywords[2].id | https://openalex.org/keywords/prior-probability |
| keywords[2].score | 0.7395907044410706 |
| keywords[2].display_name | Prior probability |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.601840615272522 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/estimator |
| keywords[4].score | 0.5694802403450012 |
| keywords[4].display_name | Estimator |
| keywords[5].id | https://openalex.org/keywords/smoothing |
| keywords[5].score | 0.5619271993637085 |
| keywords[5].display_name | Smoothing |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.5391642451286316 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/bayesian-probability |
| keywords[7].score | 0.5096988677978516 |
| keywords[7].display_name | Bayesian probability |
| keywords[8].id | https://openalex.org/keywords/gaussian |
| keywords[8].score | 0.44933295249938965 |
| keywords[8].display_name | Gaussian |
| keywords[9].id | https://openalex.org/keywords/inverse-problem |
| keywords[9].score | 0.4415615499019623 |
| keywords[9].display_name | Inverse problem |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.4057849049568176 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.39180880784988403 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/applied-mathematics |
| keywords[12].score | 0.356436163187027 |
| keywords[12].display_name | Applied mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.16824990510940552 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[14].score | 0.08313629031181335 |
| keywords[14].display_name | Maximum likelihood |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.07113 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.07113 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.07113 |
| locations[1].id | doi:10.48550/arxiv.2211.07113 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.07113 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5027115378 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zilai Si |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Si, Zilai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025152292 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3753-9670 |
| authorships[1].author.display_name | Yucong Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Yucong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036898670 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6618-631X |
| authorships[2].author.display_name | Alexander Strang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Strang, Alexander |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.07113 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Path-following methods for Maximum a Posteriori estimators in Bayesian hierarchical models: How estimates depend on hyperparameters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W2140186469, https://openalex.org/W4390421286, https://openalex.org/W4280563792, https://openalex.org/W4389724018, https://openalex.org/W1839961359, https://openalex.org/W2075146114, https://openalex.org/W4309133645, https://openalex.org/W2100805585, https://openalex.org/W4234607605, https://openalex.org/W251497191 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.07113 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.07113 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.07113 |
| primary_location.id | pmh:oai:arXiv.org:2211.07113 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.07113 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.07113 |
| publication_date | 2022-11-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 1, 55, 97, 112, 139, 143, 161 |
| abstract_inverted_index.By | 73, 135 |
| abstract_inverted_index.We | 94, 169 |
| abstract_inverted_index.as | 84, 105 |
| abstract_inverted_index.in | 22, 69, 131, 152 |
| abstract_inverted_index.of | 28, 35, 42, 47, 57, 118, 127, 182 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.to | 18, 66, 114, 123, 129, 142 |
| abstract_inverted_index.we | 53, 77 |
| abstract_inverted_index.MAP | 102, 120 |
| abstract_inverted_index.The | 26 |
| abstract_inverted_index.act | 83 |
| abstract_inverted_index.all | 6 |
| abstract_inverted_index.and | 45, 92, 122 |
| abstract_inverted_index.are | 15, 158, 175 |
| abstract_inverted_index.can | 148 |
| abstract_inverted_index.the | 23, 29, 33, 36, 40, 43, 48, 75, 106, 116, 125, 132, 146, 183 |
| abstract_inverted_index.$p$, | 90 |
| abstract_inverted_index.Path | 109 |
| abstract_inverted_index.find | 149 |
| abstract_inverted_index.form | 27 |
| abstract_inverted_index.from | 138 |
| abstract_inverted_index.less | 176 |
| abstract_inverted_index.like | 5 |
| abstract_inverted_index.move | 78 |
| abstract_inverted_index.show | 170 |
| abstract_inverted_index.test | 124 |
| abstract_inverted_index.than | 179 |
| abstract_inverted_index.that | 82, 100, 157, 172 |
| abstract_inverted_index.then | 95 |
| abstract_inverted_index.thus | 39 |
| abstract_inverted_index.user | 113, 147 |
| abstract_inverted_index.with | 61, 88, 160 |
| abstract_inverted_index.(MAP) | 3 |
| abstract_inverted_index.Here, | 52 |
| abstract_inverted_index.These | 13 |
| abstract_inverted_index.error | 177 |
| abstract_inverted_index.gamma | 63 |
| abstract_inverted_index.local | 150 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.paths | 104, 137 |
| abstract_inverted_index.prior | 11, 31, 133, 167 |
| abstract_inverted_index.prone | 178 |
| abstract_inverted_index.shape | 34 |
| abstract_inverted_index.space | 117 |
| abstract_inverted_index.these | 173 |
| abstract_inverted_index.using | 165 |
| abstract_inverted_index.vary. | 108 |
| abstract_inverted_index.allows | 111 |
| abstract_inverted_index.chosen | 17, 30 |
| abstract_inverted_index.convex | 140, 162 |
| abstract_inverted_index.direct | 180 |
| abstract_inverted_index.family | 56 |
| abstract_inverted_index.linear | 70 |
| abstract_inverted_index.method | 99 |
| abstract_inverted_index.models | 60 |
| abstract_inverted_index.priors | 81 |
| abstract_inverted_index.region | 141 |
| abstract_inverted_index.scale. | 93 |
| abstract_inverted_index.tracks | 101 |
| abstract_inverted_index.Maximum | 0 |
| abstract_inverted_index.between | 80 |
| abstract_inverted_index.changes | 130 |
| abstract_inverted_index.depends | 9 |
| abstract_inverted_index.derived | 164 |
| abstract_inverted_index.explore | 115 |
| abstract_inverted_index.inverse | 71 |
| abstract_inverted_index.promote | 19, 67 |
| abstract_inverted_index.regimes | 156 |
| abstract_inverted_index.region, | 145 |
| abstract_inverted_index.related | 166 |
| abstract_inverted_index.tracing | 136 |
| abstract_inverted_index.varying | 74 |
| abstract_inverted_index.$\ell_p$ | 86 |
| abstract_inverted_index.Bayesian | 7 |
| abstract_inverted_index.Gaussian | 58 |
| abstract_inverted_index.behavior | 41 |
| abstract_inverted_index.consider | 54 |
| abstract_inverted_index.designed | 65 |
| abstract_inverted_index.features | 21 |
| abstract_inverted_index.flexible | 89 |
| abstract_inverted_index.methods, | 8 |
| abstract_inverted_index.possible | 119 |
| abstract_inverted_index.problem. | 51, 185 |
| abstract_inverted_index.smoothed | 85 |
| abstract_inverted_index.solution | 103 |
| abstract_inverted_index.sparsity | 68, 154 |
| abstract_inverted_index.specific | 20 |
| abstract_inverted_index.strongly | 153 |
| abstract_inverted_index.estimate. | 25 |
| abstract_inverted_index.estimator | 44 |
| abstract_inverted_index.following | 110 |
| abstract_inverted_index.introduce | 96 |
| abstract_inverted_index.penalties | 87 |
| abstract_inverted_index.posterior | 37 |
| abstract_inverted_index.problems. | 72 |
| abstract_inverted_index.promoting | 155 |
| abstract_inverted_index.recovered | 24 |
| abstract_inverted_index.solutions | 121, 128 |
| abstract_inverted_index.associated | 49 |
| abstract_inverted_index.complexity | 46 |
| abstract_inverted_index.consistent | 159 |
| abstract_inverted_index.determines | 32 |
| abstract_inverted_index.minimizers | 151 |
| abstract_inverted_index.non-convex | 144, 184 |
| abstract_inverted_index.posteriori | 2 |
| abstract_inverted_index.relaxation | 163 |
| abstract_inverted_index.smoothing, | 91 |
| abstract_inverted_index.solutions. | 174 |
| abstract_inverted_index.assumptions | 14 |
| abstract_inverted_index.estimation, | 4 |
| abstract_inverted_index.generalized | 62 |
| abstract_inverted_index.hyperpriors | 64 |
| abstract_inverted_index.sensitivity | 126 |
| abstract_inverted_index.assumptions. | 12, 134, 168 |
| abstract_inverted_index.continuously | 79 |
| abstract_inverted_index.hierarchical | 59 |
| abstract_inverted_index.optimization | 50, 181 |
| abstract_inverted_index.distribution, | 38 |
| abstract_inverted_index.experimentally | 171 |
| abstract_inverted_index.hyperparameters | 107 |
| abstract_inverted_index.hyperparameters, | 76 |
| abstract_inverted_index.predictor-corrector | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |