Pathwise uniform convergence of time discretization schemes for SPDEs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/imanum/drae055
In this paper we prove convergence rates for time discretization schemes for semilinear stochastic evolution equations with additive or multiplicative Gaussian noise, where the leading operator $A$ is the generator of a strongly continuous semigroup $S$ on a Hilbert space $X$, and the focus is on nonparabolic problems. The main results are optimal bounds for the uniform strong error$$ \begin{align*} &\mathrm{E}_{k}^{\infty} := \Big({\mathbb{E}} \sup_{j\in \{0, \ldots, N_{k}\}} \|U(t_{j}) - U^{j}\|^{p}\Big)^{1/p},\end{align*} $$where $p \in [2,\infty )$, $U$ is the mild solution, $U^{j}$ is obtained from a time discretization scheme, $k$ is the step size and $N_{k} = T/k$. The usual schemes such as the exponential Euler (EE), the implicit Euler (IE), the Crank–Nicolson (CN) method, etc. are included as special cases. Under conditions on the nonlinearity and the noise, we show $\mathrm{E}_{k}^{\infty }\lesssim k \sqrt{\log (T/k)}$ (linear equation, additive noise, general $S$)$\mathrm{E}_{k}^{\infty }\lesssim \sqrt{k} \sqrt{\log (T/k)}$ (nonlinear equation, multiplicative noise, contractive $S$)$\mathrm{E}_{k}^{\infty }\lesssim k \sqrt{\log (T/k)}$ (nonlinear wave equation, multiplicative noise), for a large class of time discretization schemes. The logarithmic factor can be removed if the EE method is used with a (quasi)-contractive $S$. The obtained bounds coincide with the optimal bounds for SDEs. Most of the existing literature is concerned with bounds for the simpler pointwise strong error$$ \begin{align*} &\mathrm{E}_{k} := \bigg(\sup_{j\in \{0,\ldots,N_{k}\}}{\mathbb{E}} \|U(t_{j}) - U^{j}\|^{p}\bigg)^{1/p}.\end{align*} $$Applications to Maxwell equations, Schrödinger equations and wave equations are included. For these equations, our results improve and reprove several existing results with a unified method and provide the first results known for the IE and the CN method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/imanum/drae055
- OA Status
- hybrid
- Cited By
- 1
- References
- 82
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413096985
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413096985Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/imanum/drae055Digital Object Identifier
- Title
-
Pathwise uniform convergence of time discretization schemes for SPDEsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-18Full publication date if available
- Authors
-
Katharina Klioba, Mark VeraarList of authors in order
- Landing page
-
https://doi.org/10.1093/imanum/drae055Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/imanum/drae055Direct OA link when available
- Concepts
-
Mathematics, Discretization, Multiplicative function, Combinatorics, Semigroup, Mathematical analysis, Multiplicative noise, Digital signal processing, Electrical engineering, Signal transfer function, Engineering, Analog signalTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
82Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413096985 |
|---|---|
| doi | https://doi.org/10.1093/imanum/drae055 |
| ids.doi | https://doi.org/10.1093/imanum/drae055 |
| ids.openalex | https://openalex.org/W4413096985 |
| fwci | 0.99906764 |
| type | article |
| title | Pathwise uniform convergence of time discretization schemes for SPDEs |
| biblio.issue | 4 |
| biblio.volume | 45 |
| biblio.last_page | 2131 |
| biblio.first_page | 2060 |
| topics[0].id | https://openalex.org/T10067 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2003 |
| topics[0].subfield.display_name | Finance |
| topics[0].display_name | Stochastic processes and financial applications |
| topics[1].id | https://openalex.org/T10282 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9441999793052673 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2003 |
| topics[1].subfield.display_name | Finance |
| topics[1].display_name | Financial Risk and Volatility Modeling |
| topics[2].id | https://openalex.org/T11205 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9419000148773193 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | Numerical methods in inverse problems |
| is_xpac | False |
| apc_list.value | 2582 |
| apc_list.currency | GBP |
| apc_list.value_usd | 3167 |
| apc_paid.value | 2582 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 3167 |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.792801558971405 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C73000952 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5989230871200562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17007827 |
| concepts[1].display_name | Discretization |
| concepts[2].id | https://openalex.org/C42747912 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5634567737579346 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1048447 |
| concepts[2].display_name | Multiplicative function |
| concepts[3].id | https://openalex.org/C114614502 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46537941694259644 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[3].display_name | Combinatorics |
| concepts[4].id | https://openalex.org/C207405024 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44189316034317017 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207348 |
| concepts[4].display_name | Semigroup |
| concepts[5].id | https://openalex.org/C134306372 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43010690808296204 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[5].display_name | Mathematical analysis |
| concepts[6].id | https://openalex.org/C18015164 |
| concepts[6].level | 5 |
| concepts[6].score | 0.4273050129413605 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6935000 |
| concepts[6].display_name | Multiplicative noise |
| concepts[7].id | https://openalex.org/C84462506 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q173142 |
| concepts[7].display_name | Digital signal processing |
| concepts[8].id | https://openalex.org/C119599485 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[8].display_name | Electrical engineering |
| concepts[9].id | https://openalex.org/C131021393 |
| concepts[9].level | 4 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7512759 |
| concepts[9].display_name | Signal transfer function |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C13412647 |
| concepts[11].level | 3 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q174948 |
| concepts[11].display_name | Analog signal |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.792801558971405 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/discretization |
| keywords[1].score | 0.5989230871200562 |
| keywords[1].display_name | Discretization |
| keywords[2].id | https://openalex.org/keywords/multiplicative-function |
| keywords[2].score | 0.5634567737579346 |
| keywords[2].display_name | Multiplicative function |
| keywords[3].id | https://openalex.org/keywords/combinatorics |
| keywords[3].score | 0.46537941694259644 |
| keywords[3].display_name | Combinatorics |
| keywords[4].id | https://openalex.org/keywords/semigroup |
| keywords[4].score | 0.44189316034317017 |
| keywords[4].display_name | Semigroup |
| keywords[5].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[5].score | 0.43010690808296204 |
| keywords[5].display_name | Mathematical analysis |
| keywords[6].id | https://openalex.org/keywords/multiplicative-noise |
| keywords[6].score | 0.4273050129413605 |
| keywords[6].display_name | Multiplicative noise |
| language | en |
| locations[0].id | doi:10.1093/imanum/drae055 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S201897549 |
| locations[0].source.issn | 0272-4979, 1464-3642 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0272-4979 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IMA Journal of Numerical Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IMA Journal of Numerical Analysis |
| locations[0].landing_page_url | https://doi.org/10.1093/imanum/drae055 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058323573 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-7946-917X |
| authorships[0].author.display_name | Katharina Klioba |
| authorships[0].countries | DE, NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I884043246 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Mathematics, Hamburg University of Technology , Am Schwarzenberg-Campus 3, D-21073 Hamburg , |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I98358874 |
| authorships[0].affiliations[1].raw_affiliation_string | Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I884043246 |
| authorships[0].institutions[0].ror | https://ror.org/04bs1pb34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I884043246 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Hamburg University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I159176309 |
| authorships[0].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Universität Hamburg |
| authorships[0].institutions[2].id | https://openalex.org/I98358874 |
| authorships[0].institutions[2].ror | https://ror.org/02e2c7k09 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I98358874 |
| authorships[0].institutions[2].country_code | NL |
| authorships[0].institutions[2].display_name | Delft University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Katharina Klioba |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands, Institute of Mathematics, Hamburg University of Technology , Am Schwarzenberg-Campus 3, D-21073 Hamburg , |
| authorships[1].author.id | https://openalex.org/A5083145406 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3167-7471 |
| authorships[1].author.display_name | Mark Veraar |
| authorships[1].countries | DE, NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[1].affiliations[0].raw_affiliation_string | Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I159176309, https://openalex.org/I884043246 |
| authorships[1].affiliations[1].raw_affiliation_string | Hamburg University of Technology, Institute of Mathematics, D-21073 Hamburg, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I884043246 |
| authorships[1].institutions[0].ror | https://ror.org/04bs1pb34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I884043246 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Hamburg University of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I159176309 |
| authorships[1].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | Universität Hamburg |
| authorships[1].institutions[2].id | https://openalex.org/I98358874 |
| authorships[1].institutions[2].ror | https://ror.org/02e2c7k09 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I98358874 |
| authorships[1].institutions[2].country_code | NL |
| authorships[1].institutions[2].display_name | Delft University of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mark Veraar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands, Hamburg University of Technology, Institute of Mathematics, D-21073 Hamburg, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/imanum/drae055 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-08-12T00:00:00 |
| display_name | Pathwise uniform convergence of time discretization schemes for SPDEs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10067 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2003 |
| primary_topic.subfield.display_name | Finance |
| primary_topic.display_name | Stochastic processes and financial applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2006251942, https://openalex.org/W2364741597, https://openalex.org/W2033341479, https://openalex.org/W4287812451, https://openalex.org/W3022718941, https://openalex.org/W2150219835, https://openalex.org/W1996414039, https://openalex.org/W2506602630, https://openalex.org/W3097284316 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/imanum/drae055 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S201897549 |
| best_oa_location.source.issn | 0272-4979, 1464-3642 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0272-4979 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IMA Journal of Numerical Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IMA Journal of Numerical Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1093/imanum/drae055 |
| primary_location.id | doi:10.1093/imanum/drae055 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S201897549 |
| primary_location.source.issn | 0272-4979, 1464-3642 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0272-4979 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IMA Journal of Numerical Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IMA Journal of Numerical Analysis |
| primary_location.landing_page_url | https://doi.org/10.1093/imanum/drae055 |
| publication_date | 2024-07-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2964235722, https://openalex.org/W1561666672, https://openalex.org/W2016383951, https://openalex.org/W3180994920, https://openalex.org/W2047368043, https://openalex.org/W2963181689, https://openalex.org/W4360917607, https://openalex.org/W6615520014, https://openalex.org/W2536678148, https://openalex.org/W4363609292, https://openalex.org/W2185167577, https://openalex.org/W3039764731, https://openalex.org/W1966504425, https://openalex.org/W2034421218, https://openalex.org/W3010529683, https://openalex.org/W3129182142, https://openalex.org/W1989211670, https://openalex.org/W6765586187, https://openalex.org/W2345598951, https://openalex.org/W6758180279, https://openalex.org/W2095273359, https://openalex.org/W6810949132, https://openalex.org/W2962967279, https://openalex.org/W2581568259, https://openalex.org/W1542004730, https://openalex.org/W4233132495, https://openalex.org/W6641280898, https://openalex.org/W4313400593, https://openalex.org/W4283204556, https://openalex.org/W3177988443, https://openalex.org/W1966056561, https://openalex.org/W2764280410, https://openalex.org/W2012547370, https://openalex.org/W2186381545, https://openalex.org/W4238322158, https://openalex.org/W3214449759, https://openalex.org/W3213457333, https://openalex.org/W1966375731, https://openalex.org/W639956148, https://openalex.org/W2027566891, https://openalex.org/W2062295700, https://openalex.org/W2605703589, https://openalex.org/W71469676, https://openalex.org/W6892847383, https://openalex.org/W2558783215, https://openalex.org/W3007071064, https://openalex.org/W2152361411, https://openalex.org/W1562558505, https://openalex.org/W2103925787, https://openalex.org/W2028402684, https://openalex.org/W2018164853, https://openalex.org/W6855323459, https://openalex.org/W595079961, https://openalex.org/W3046457476, https://openalex.org/W2052162576, https://openalex.org/W2907533780, https://openalex.org/W1995630520, https://openalex.org/W6894294540, https://openalex.org/W4214671029, https://openalex.org/W4205884166, https://openalex.org/W1601091488, https://openalex.org/W3034670212, https://openalex.org/W3094587094, https://openalex.org/W1983214260, https://openalex.org/W2014652601, https://openalex.org/W3211896189, https://openalex.org/W4392013005, https://openalex.org/W2793394283, https://openalex.org/W2963967975, https://openalex.org/W2908964587, https://openalex.org/W3103251493, https://openalex.org/W1964070472, https://openalex.org/W4385292241, https://openalex.org/W2975003805, https://openalex.org/W1540580484, https://openalex.org/W3101377346, https://openalex.org/W1606157354, https://openalex.org/W3102436781, https://openalex.org/W560409768, https://openalex.org/W2963361267, https://openalex.org/W3037571803, https://openalex.org/W1533889494 |
| referenced_works_count | 82 |
| abstract_inverted_index.- | 69, 216 |
| abstract_inverted_index.= | 96 |
| abstract_inverted_index.a | 32, 38, 85, 162, 182, 241 |
| abstract_inverted_index.k | 133, 153 |
| abstract_inverted_index.$p | 72 |
| abstract_inverted_index.:= | 62, 212 |
| abstract_inverted_index.CN | 255 |
| abstract_inverted_index.EE | 177 |
| abstract_inverted_index.IE | 252 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.as | 102, 118 |
| abstract_inverted_index.be | 173 |
| abstract_inverted_index.if | 175 |
| abstract_inverted_index.is | 28, 45, 77, 82, 90, 179, 200 |
| abstract_inverted_index.of | 31, 165, 196 |
| abstract_inverted_index.on | 37, 46, 123 |
| abstract_inverted_index.or | 19 |
| abstract_inverted_index.to | 219 |
| abstract_inverted_index.we | 4, 129 |
| abstract_inverted_index.$A$ | 27 |
| abstract_inverted_index.$S$ | 36 |
| abstract_inverted_index.$U$ | 76 |
| abstract_inverted_index.$k$ | 89 |
| abstract_inverted_index.)$, | 75 |
| abstract_inverted_index.For | 229 |
| abstract_inverted_index.The | 49, 98, 169, 185 |
| abstract_inverted_index.\in | 73 |
| abstract_inverted_index.and | 42, 94, 126, 224, 235, 244, 253 |
| abstract_inverted_index.are | 52, 116, 227 |
| abstract_inverted_index.can | 172 |
| abstract_inverted_index.for | 8, 12, 55, 161, 193, 204, 250 |
| abstract_inverted_index.our | 232 |
| abstract_inverted_index.the | 24, 29, 43, 56, 78, 91, 103, 107, 111, 124, 127, 176, 190, 197, 205, 246, 251, 254 |
| abstract_inverted_index.$S$. | 184 |
| abstract_inverted_index.$X$, | 41 |
| abstract_inverted_index.(CN) | 113 |
| abstract_inverted_index.Most | 195 |
| abstract_inverted_index.\{0, | 65 |
| abstract_inverted_index.etc. | 115 |
| abstract_inverted_index.from | 84 |
| abstract_inverted_index.main | 50 |
| abstract_inverted_index.mild | 79 |
| abstract_inverted_index.show | 130 |
| abstract_inverted_index.size | 93 |
| abstract_inverted_index.step | 92 |
| abstract_inverted_index.such | 101 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.time | 9, 86, 166 |
| abstract_inverted_index.used | 180 |
| abstract_inverted_index.wave | 157, 225 |
| abstract_inverted_index.with | 17, 181, 189, 202, 240 |
| abstract_inverted_index.(EE), | 106 |
| abstract_inverted_index.(IE), | 110 |
| abstract_inverted_index.Euler | 105, 109 |
| abstract_inverted_index.SDEs. | 194 |
| abstract_inverted_index.T/k$. | 97 |
| abstract_inverted_index.Under | 121 |
| abstract_inverted_index.class | 164 |
| abstract_inverted_index.first | 247 |
| abstract_inverted_index.focus | 44 |
| abstract_inverted_index.known | 249 |
| abstract_inverted_index.large | 163 |
| abstract_inverted_index.paper | 3 |
| abstract_inverted_index.prove | 5 |
| abstract_inverted_index.rates | 7 |
| abstract_inverted_index.space | 40 |
| abstract_inverted_index.these | 230 |
| abstract_inverted_index.usual | 99 |
| abstract_inverted_index.where | 23 |
| abstract_inverted_index.$N_{k} | 95 |
| abstract_inverted_index.bounds | 54, 187, 192, 203 |
| abstract_inverted_index.cases. | 120 |
| abstract_inverted_index.factor | 171 |
| abstract_inverted_index.method | 178, 243 |
| abstract_inverted_index.noise, | 22, 128, 139, 149 |
| abstract_inverted_index.strong | 58, 208 |
| abstract_inverted_index.$$where | 71 |
| abstract_inverted_index.$U^{j}$ | 81 |
| abstract_inverted_index.(T/k)}$ | 135, 145, 155 |
| abstract_inverted_index.(linear | 136 |
| abstract_inverted_index.Hilbert | 39 |
| abstract_inverted_index.Maxwell | 220 |
| abstract_inverted_index.\ldots, | 66 |
| abstract_inverted_index.error$$ | 59, 209 |
| abstract_inverted_index.general | 140 |
| abstract_inverted_index.improve | 234 |
| abstract_inverted_index.leading | 25 |
| abstract_inverted_index.method, | 114 |
| abstract_inverted_index.method. | 256 |
| abstract_inverted_index.noise), | 160 |
| abstract_inverted_index.optimal | 53, 191 |
| abstract_inverted_index.provide | 245 |
| abstract_inverted_index.removed | 174 |
| abstract_inverted_index.reprove | 236 |
| abstract_inverted_index.results | 51, 233, 239, 248 |
| abstract_inverted_index.scheme, | 88 |
| abstract_inverted_index.schemes | 11, 100 |
| abstract_inverted_index.several | 237 |
| abstract_inverted_index.simpler | 206 |
| abstract_inverted_index.special | 119 |
| abstract_inverted_index.unified | 242 |
| abstract_inverted_index.uniform | 57 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Gaussian | 21 |
| abstract_inverted_index.N_{k}\}} | 67 |
| abstract_inverted_index.\sqrt{k} | 143 |
| abstract_inverted_index.additive | 18, 138 |
| abstract_inverted_index.coincide | 188 |
| abstract_inverted_index.existing | 198, 238 |
| abstract_inverted_index.implicit | 108 |
| abstract_inverted_index.included | 117 |
| abstract_inverted_index.obtained | 83, 186 |
| abstract_inverted_index.operator | 26 |
| abstract_inverted_index.schemes. | 168 |
| abstract_inverted_index.strongly | 33 |
| abstract_inverted_index.[2,\infty | 74 |
| abstract_inverted_index.concerned | 201 |
| abstract_inverted_index.equation, | 137, 147, 158 |
| abstract_inverted_index.equations | 16, 223, 226 |
| abstract_inverted_index.evolution | 15 |
| abstract_inverted_index.generator | 30 |
| abstract_inverted_index.included. | 228 |
| abstract_inverted_index.pointwise | 207 |
| abstract_inverted_index.problems. | 48 |
| abstract_inverted_index.semigroup | 35 |
| abstract_inverted_index.solution, | 80 |
| abstract_inverted_index.}\lesssim | 132, 142, 152 |
| abstract_inverted_index.(nonlinear | 146, 156 |
| abstract_inverted_index.\sqrt{\log | 134, 144, 154 |
| abstract_inverted_index.\sup_{j\in | 64 |
| abstract_inverted_index.\|U(t_{j}) | 68, 215 |
| abstract_inverted_index.conditions | 122 |
| abstract_inverted_index.continuous | 34 |
| abstract_inverted_index.equations, | 221, 231 |
| abstract_inverted_index.literature | 199 |
| abstract_inverted_index.semilinear | 13 |
| abstract_inverted_index.stochastic | 14 |
| abstract_inverted_index.contractive | 150 |
| abstract_inverted_index.convergence | 6 |
| abstract_inverted_index.exponential | 104 |
| abstract_inverted_index.logarithmic | 170 |
| abstract_inverted_index.Schrödinger | 222 |
| abstract_inverted_index.nonlinearity | 125 |
| abstract_inverted_index.nonparabolic | 47 |
| abstract_inverted_index.$$Applications | 218 |
| abstract_inverted_index.\begin{align*} | 60, 210 |
| abstract_inverted_index.discretization | 10, 87, 167 |
| abstract_inverted_index.multiplicative | 20, 148, 159 |
| abstract_inverted_index.Crank–Nicolson | 112 |
| abstract_inverted_index.\bigg(\sup_{j\in | 213 |
| abstract_inverted_index.\Big({\mathbb{E}} | 63 |
| abstract_inverted_index.&\mathrm{E}_{k} | 211 |
| abstract_inverted_index.(quasi)-contractive | 183 |
| abstract_inverted_index.$\mathrm{E}_{k}^{\infty | 131 |
| abstract_inverted_index.$S$)$\mathrm{E}_{k}^{\infty | 141, 151 |
| abstract_inverted_index.&\mathrm{E}_{k}^{\infty} | 61 |
| abstract_inverted_index.\{0,\ldots,N_{k}\}}{\mathbb{E}} | 214 |
| abstract_inverted_index.U^{j}\|^{p}\Big)^{1/p},\end{align*} | 70 |
| abstract_inverted_index.U^{j}\|^{p}\bigg)^{1/p}.\end{align*} | 217 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.78981821 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |