Patient-Adaptive and Learned MRI Data Undersampling Using Neighborhood Clustering Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.08507
There has been much recent interest in adapting undersampled trajectories in MRI based on training data. In this work, we propose a novel patient-adaptive MRI sampling algorithm based on grouping scans within a training set. Scan-adaptive sampling patterns are optimized together with an image reconstruction network for the training scans. The training optimization alternates between determining the best sampling pattern for each scan (based on a greedy search or iterative coordinate descent (ICD)) and training a reconstructor across the dataset. The eventual scan-adaptive sampling patterns on the training set are used as labels to predict sampling design using nearest neighbor search at test time. The proposed algorithm is applied to the fastMRI knee multicoil dataset and demonstrates improved performance over several baselines.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.08507
- https://arxiv.org/pdf/2312.08507
- OA Status
- green
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389814284
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389814284Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.08507Digital Object Identifier
- Title
-
Patient-Adaptive and Learned MRI Data Undersampling Using Neighborhood ClusteringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-13Full publication date if available
- Authors
-
Siddhant Gautam, Angqi Li, Saiprasad RavishankarList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.08507Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.08507Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.08507Direct OA link when available
- Concepts
-
Undersampling, Computer science, Sampling (signal processing), Adaptive sampling, Artificial intelligence, Cluster analysis, Set (abstract data type), Data set, Compressed sensing, Pattern recognition (psychology), Data mining, Machine learning, Computer vision, Monte Carlo method, Mathematics, Statistics, Filter (signal processing), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389814284 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.08507 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.08507 |
| ids.openalex | https://openalex.org/W4389814284 |
| fwci | 0.0 |
| type | preprint |
| title | Patient-Adaptive and Learned MRI Data Undersampling Using Neighborhood Clustering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T11885 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | MRI in cancer diagnosis |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136536468 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9800180196762085 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1225894 |
| concepts[0].display_name | Undersampling |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7224900722503662 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6747244000434875 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C2781395549 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6220417022705078 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4680762 |
| concepts[3].display_name | Adaptive sampling |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6018164157867432 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C73555534 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5782846808433533 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[5].display_name | Cluster analysis |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5246223211288452 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C58489278 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48752066493034363 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[7].display_name | Data set |
| concepts[8].id | https://openalex.org/C124851039 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4709934592247009 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[8].display_name | Compressed sensing |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45521730184555054 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3846834599971771 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3351253867149353 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2990092635154724 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C19499675 |
| concepts[13].level | 2 |
| concepts[13].score | 0.21487030386924744 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[13].display_name | Monte Carlo method |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11131322383880615 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07164803147315979 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C106131492 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[16].display_name | Filter (signal processing) |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/undersampling |
| keywords[0].score | 0.9800180196762085 |
| keywords[0].display_name | Undersampling |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7224900722503662 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.6747244000434875 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/adaptive-sampling |
| keywords[3].score | 0.6220417022705078 |
| keywords[3].display_name | Adaptive sampling |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6018164157867432 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/cluster-analysis |
| keywords[5].score | 0.5782846808433533 |
| keywords[5].display_name | Cluster analysis |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.5246223211288452 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/data-set |
| keywords[7].score | 0.48752066493034363 |
| keywords[7].display_name | Data set |
| keywords[8].id | https://openalex.org/keywords/compressed-sensing |
| keywords[8].score | 0.4709934592247009 |
| keywords[8].display_name | Compressed sensing |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.45521730184555054 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3846834599971771 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3351253867149353 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.2990092635154724 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[13].score | 0.21487030386924744 |
| keywords[13].display_name | Monte Carlo method |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.11131322383880615 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.07164803147315979 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.08507 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.08507 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.08507 |
| locations[1].id | doi:10.48550/arxiv.2312.08507 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.08507 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5030333220 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2226-8134 |
| authorships[0].author.display_name | Siddhant Gautam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI, USA |
| authorships[0].institutions[0].id | https://openalex.org/I87216513 |
| authorships[0].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Michigan State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siddhant Gautam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI, USA |
| authorships[1].author.id | https://openalex.org/A5108909511 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Angqi Li |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI, USA |
| authorships[1].institutions[0].id | https://openalex.org/I87216513 |
| authorships[1].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Michigan State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Angqi Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI, USA |
| authorships[2].author.id | https://openalex.org/A5111562177 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Saiprasad Ravishankar |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87216513 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Biomedical Engineering, Michigan State University, East Lansing, MI, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I87216513 |
| authorships[2].affiliations[1].raw_affiliation_string | Dept. of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI, USA |
| authorships[2].institutions[0].id | https://openalex.org/I87216513 |
| authorships[2].institutions[0].ror | https://ror.org/05hs6h993 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87216513 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Michigan State University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Saiprasad Ravishankar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Biomedical Engineering, Michigan State University, East Lansing, MI, USA, Dept. of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.08507 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Patient-Adaptive and Learned MRI Data Undersampling Using Neighborhood Clustering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W3011226087, https://openalex.org/W2212041357, https://openalex.org/W2895530314, https://openalex.org/W3214931932, https://openalex.org/W1959447026, https://openalex.org/W2052082011, https://openalex.org/W2903019797, https://openalex.org/W2218273114, https://openalex.org/W2038693912, https://openalex.org/W1991602789 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.08507 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.08507 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.08507 |
| primary_location.id | pmh:oai:arXiv.org:2312.08507 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.08507 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.08507 |
| publication_date | 2023-12-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2101507236, https://openalex.org/W3100730608, https://openalex.org/W1521875821, https://openalex.org/W2141039087, https://openalex.org/W3050528501, https://openalex.org/W2884436604, https://openalex.org/W2907696891, https://openalex.org/W2145096794, https://openalex.org/W3162789822, https://openalex.org/W4230563464, https://openalex.org/W2900756484, https://openalex.org/W2964293140, https://openalex.org/W2159783272, https://openalex.org/W3211349725, https://openalex.org/W2592651140, https://openalex.org/W2168668658, https://openalex.org/W2995396522, https://openalex.org/W4224942989, https://openalex.org/W2101675075, https://openalex.org/W2963439178, https://openalex.org/W1901129140, https://openalex.org/W2604650380, https://openalex.org/W3103921058, https://openalex.org/W2070678378, https://openalex.org/W1522301498, https://openalex.org/W2967641264 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 21, 32, 65, 75 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.at | 101 |
| abstract_inverted_index.in | 6, 10 |
| abstract_inverted_index.is | 107 |
| abstract_inverted_index.on | 13, 28, 64, 85 |
| abstract_inverted_index.or | 68 |
| abstract_inverted_index.to | 93, 109 |
| abstract_inverted_index.we | 19 |
| abstract_inverted_index.MRI | 11, 24 |
| abstract_inverted_index.The | 50, 80, 104 |
| abstract_inverted_index.and | 73, 115 |
| abstract_inverted_index.are | 38, 89 |
| abstract_inverted_index.for | 46, 60 |
| abstract_inverted_index.has | 1 |
| abstract_inverted_index.set | 88 |
| abstract_inverted_index.the | 47, 56, 78, 86, 110 |
| abstract_inverted_index.been | 2 |
| abstract_inverted_index.best | 57 |
| abstract_inverted_index.each | 61 |
| abstract_inverted_index.knee | 112 |
| abstract_inverted_index.much | 3 |
| abstract_inverted_index.over | 119 |
| abstract_inverted_index.scan | 62 |
| abstract_inverted_index.set. | 34 |
| abstract_inverted_index.test | 102 |
| abstract_inverted_index.this | 17 |
| abstract_inverted_index.used | 90 |
| abstract_inverted_index.with | 41 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.based | 12, 27 |
| abstract_inverted_index.data. | 15 |
| abstract_inverted_index.image | 43 |
| abstract_inverted_index.novel | 22 |
| abstract_inverted_index.scans | 30 |
| abstract_inverted_index.time. | 103 |
| abstract_inverted_index.using | 97 |
| abstract_inverted_index.work, | 18 |
| abstract_inverted_index.(ICD)) | 72 |
| abstract_inverted_index.(based | 63 |
| abstract_inverted_index.across | 77 |
| abstract_inverted_index.design | 96 |
| abstract_inverted_index.greedy | 66 |
| abstract_inverted_index.labels | 92 |
| abstract_inverted_index.recent | 4 |
| abstract_inverted_index.scans. | 49 |
| abstract_inverted_index.search | 67, 100 |
| abstract_inverted_index.within | 31 |
| abstract_inverted_index.applied | 108 |
| abstract_inverted_index.between | 54 |
| abstract_inverted_index.dataset | 114 |
| abstract_inverted_index.descent | 71 |
| abstract_inverted_index.fastMRI | 111 |
| abstract_inverted_index.nearest | 98 |
| abstract_inverted_index.network | 45 |
| abstract_inverted_index.pattern | 59 |
| abstract_inverted_index.predict | 94 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.several | 120 |
| abstract_inverted_index.adapting | 7 |
| abstract_inverted_index.dataset. | 79 |
| abstract_inverted_index.eventual | 81 |
| abstract_inverted_index.grouping | 29 |
| abstract_inverted_index.improved | 117 |
| abstract_inverted_index.interest | 5 |
| abstract_inverted_index.neighbor | 99 |
| abstract_inverted_index.patterns | 37, 84 |
| abstract_inverted_index.proposed | 105 |
| abstract_inverted_index.sampling | 25, 36, 58, 83, 95 |
| abstract_inverted_index.together | 40 |
| abstract_inverted_index.training | 14, 33, 48, 51, 74, 87 |
| abstract_inverted_index.algorithm | 26, 106 |
| abstract_inverted_index.iterative | 69 |
| abstract_inverted_index.multicoil | 113 |
| abstract_inverted_index.optimized | 39 |
| abstract_inverted_index.alternates | 53 |
| abstract_inverted_index.baselines. | 121 |
| abstract_inverted_index.coordinate | 70 |
| abstract_inverted_index.determining | 55 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.demonstrates | 116 |
| abstract_inverted_index.optimization | 52 |
| abstract_inverted_index.trajectories | 9 |
| abstract_inverted_index.undersampled | 8 |
| abstract_inverted_index.Scan-adaptive | 35 |
| abstract_inverted_index.reconstructor | 76 |
| abstract_inverted_index.scan-adaptive | 82 |
| abstract_inverted_index.reconstruction | 44 |
| abstract_inverted_index.patient-adaptive | 23 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.3967334 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |