Pattern Based Leaves Disease Classification Using AI Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.51583/ijltemas.2025.1406000100
- Artificial Intelligence (AI) is an overarching domain that integrates a variety of techniques, tools, and systems designed to enable machines to learn from data and perform predictive or decision-making tasks. Within this domain, computer vision stands out as a pivotal subfield, offering substantial contributions across multiple sectors, including agriculture. The integration of AI and computer vision has given rise to smart farming an advanced form of agriculture where traditional cultivation practices are optimized through intelligent technologies to enhance productivity, precision, and resource efficiency. A prominent application of computer vision in agriculture is the detection and classification of plant diseases through image classification and object detection techniques. These methods facilitate the automated identification of infected plant leaves by analyzing visual indicators such as lesions, spots, and discolorations. In this context, a specialized approach termed the Single Sample Computer Vision Recognition Algorithm (SSCVRA) has been employed to detect disease symptoms in eggplant leaves. The model was trained and validated using a dataset comprising 20,000 images, achieving an impressive classification accuracy of 99.47%. SSCVRA conducts disease identification by extracting and matching relevant image features, focusing on such parameters of color, shape, texture and comparing with consecutive region area of the leaf. The algorithm is capable of distinguishing among multiple plant diseases, including Powdery Mildew, Bacterial Leaf Spot, and Early Blight. Visualization outputs further support diagnosis by providing quantitative metrics on image similarity and disease likelihood based on color-based image analysis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.51583/ijltemas.2025.1406000100
- https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172
- OA Status
- hybrid
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412578320
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412578320Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.51583/ijltemas.2025.1406000100Digital Object Identifier
- Title
-
Pattern Based Leaves Disease Classification Using AIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-22Full publication date if available
- Authors
-
Monika Mishra, Pramod K. SinghList of authors in order
- Landing page
-
https://doi.org/10.51583/ijltemas.2025.1406000100Publisher landing page
- PDF URL
-
https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172Direct OA link when available
- Concepts
-
Artificial intelligence, Pattern recognition (psychology), Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412578320 |
|---|---|
| doi | https://doi.org/10.51583/ijltemas.2025.1406000100 |
| ids.doi | https://doi.org/10.51583/ijltemas.2025.1406000100 |
| ids.openalex | https://openalex.org/W4412578320 |
| fwci | 0.0 |
| type | article |
| title | Pattern Based Leaves Disease Classification Using AI |
| biblio.issue | 6 |
| biblio.volume | 14 |
| biblio.last_page | 914 |
| biblio.first_page | 908 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9750999808311462 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T12093 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9358000159263611 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Greenhouse Technology and Climate Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.4879536032676697 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.45785534381866455 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.32919687032699585 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.4879536032676697 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.45785534381866455 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.32919687032699585 |
| keywords[2].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.51583/ijltemas.2025.1406000100 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210212248 |
| locations[0].source.issn | 2278-2540 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2278-2540 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Latest Technology in Engineering Management & Applied Science |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Latest Technology in Engineering Management & Applied Science |
| locations[0].landing_page_url | https://doi.org/10.51583/ijltemas.2025.1406000100 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101799167 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8578-0186 |
| authorships[0].author.display_name | Monika Mishra |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Application & Information Technology and Science A K S University, Satna MP, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Madan Mohan Mishra. |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Application & Information Technology and Science A K S University, Satna MP, India |
| authorships[1].author.id | https://openalex.org/A5031873039 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3155-6621 |
| authorships[1].author.display_name | Pramod K. Singh |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Application & Information Technology and Science A K S University, Satna MP, India |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | None Pramod Singh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Application & Information Technology and Science A K S University, Satna MP, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pattern Based Leaves Disease Classification Using AI |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.51583/ijltemas.2025.1406000100 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210212248 |
| best_oa_location.source.issn | 2278-2540 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2278-2540 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Latest Technology in Engineering Management & Applied Science |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Latest Technology in Engineering Management & Applied Science |
| best_oa_location.landing_page_url | https://doi.org/10.51583/ijltemas.2025.1406000100 |
| primary_location.id | doi:10.51583/ijltemas.2025.1406000100 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210212248 |
| primary_location.source.issn | 2278-2540 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2278-2540 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Latest Technology in Engineering Management & Applied Science |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ijltemas.in/submission/index.php/online/article/download/2319/2172 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Latest Technology in Engineering Management & Applied Science |
| primary_location.landing_page_url | https://doi.org/10.51583/ijltemas.2025.1406000100 |
| publication_date | 2025-07-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3006296545, https://openalex.org/W2790802352, https://openalex.org/W2949060638, https://openalex.org/W2122671423, https://openalex.org/W4400811184, https://openalex.org/W2012061584, https://openalex.org/W2092446877, https://openalex.org/W2067924831, https://openalex.org/W4399766518, https://openalex.org/W3159908420, https://openalex.org/W4389744047, https://openalex.org/W2766576821, https://openalex.org/W4399343822, https://openalex.org/W4226165565, https://openalex.org/W2809612736, https://openalex.org/W2979678230 |
| referenced_works_count | 16 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 10, 39, 130, 159 |
| abstract_inverted_index.AI | 53 |
| abstract_inverted_index.In | 127 |
| abstract_inverted_index.an | 5, 63, 165 |
| abstract_inverted_index.as | 38, 122 |
| abstract_inverted_index.by | 117, 175, 223 |
| abstract_inverted_index.in | 90, 149 |
| abstract_inverted_index.is | 4, 92, 201 |
| abstract_inverted_index.of | 12, 52, 66, 87, 97, 113, 169, 186, 196, 203 |
| abstract_inverted_index.on | 183, 227, 234 |
| abstract_inverted_index.or | 28 |
| abstract_inverted_index.to | 18, 21, 60, 77, 145 |
| abstract_inverted_index.The | 50, 152, 199 |
| abstract_inverted_index.and | 15, 25, 54, 81, 95, 103, 125, 156, 177, 190, 215, 230 |
| abstract_inverted_index.are | 72 |
| abstract_inverted_index.has | 57, 142 |
| abstract_inverted_index.out | 37 |
| abstract_inverted_index.the | 93, 110, 134, 197 |
| abstract_inverted_index.was | 154 |
| abstract_inverted_index.(AI) | 3 |
| abstract_inverted_index.Leaf | 213 |
| abstract_inverted_index.area | 195 |
| abstract_inverted_index.been | 143 |
| abstract_inverted_index.data | 24 |
| abstract_inverted_index.form | 65 |
| abstract_inverted_index.from | 23 |
| abstract_inverted_index.rise | 59 |
| abstract_inverted_index.such | 121, 184 |
| abstract_inverted_index.that | 8 |
| abstract_inverted_index.this | 32, 128 |
| abstract_inverted_index.with | 192 |
| abstract_inverted_index.Early | 216 |
| abstract_inverted_index.Spot, | 214 |
| abstract_inverted_index.These | 107 |
| abstract_inverted_index.among | 205 |
| abstract_inverted_index.based | 233 |
| abstract_inverted_index.given | 58 |
| abstract_inverted_index.image | 101, 180, 228, 236 |
| abstract_inverted_index.leaf. | 198 |
| abstract_inverted_index.learn | 22 |
| abstract_inverted_index.model | 153 |
| abstract_inverted_index.plant | 98, 115, 207 |
| abstract_inverted_index.smart | 61 |
| abstract_inverted_index.using | 158 |
| abstract_inverted_index.where | 68 |
| abstract_inverted_index.20,000 | 162 |
| abstract_inverted_index.SSCVRA | 171 |
| abstract_inverted_index.Sample | 136 |
| abstract_inverted_index.Single | 135 |
| abstract_inverted_index.Vision | 138 |
| abstract_inverted_index.Within | 31 |
| abstract_inverted_index.across | 45 |
| abstract_inverted_index.color, | 187 |
| abstract_inverted_index.detect | 146 |
| abstract_inverted_index.domain | 7 |
| abstract_inverted_index.enable | 19 |
| abstract_inverted_index.leaves | 116 |
| abstract_inverted_index.object | 104 |
| abstract_inverted_index.region | 194 |
| abstract_inverted_index.shape, | 188 |
| abstract_inverted_index.spots, | 124 |
| abstract_inverted_index.stands | 36 |
| abstract_inverted_index.tasks. | 30 |
| abstract_inverted_index.termed | 133 |
| abstract_inverted_index.tools, | 14 |
| abstract_inverted_index.vision | 35, 56, 89 |
| abstract_inverted_index.visual | 119 |
| abstract_inverted_index.99.47%. | 170 |
| abstract_inverted_index.Blight. | 217 |
| abstract_inverted_index.Mildew, | 211 |
| abstract_inverted_index.Powdery | 210 |
| abstract_inverted_index.capable | 202 |
| abstract_inverted_index.dataset | 160 |
| abstract_inverted_index.disease | 147, 173, 231 |
| abstract_inverted_index.domain, | 33 |
| abstract_inverted_index.enhance | 78 |
| abstract_inverted_index.farming | 62 |
| abstract_inverted_index.further | 220 |
| abstract_inverted_index.images, | 163 |
| abstract_inverted_index.leaves. | 151 |
| abstract_inverted_index.methods | 108 |
| abstract_inverted_index.metrics | 226 |
| abstract_inverted_index.outputs | 219 |
| abstract_inverted_index.perform | 26 |
| abstract_inverted_index.pivotal | 40 |
| abstract_inverted_index.support | 221 |
| abstract_inverted_index.systems | 16 |
| abstract_inverted_index.texture | 189 |
| abstract_inverted_index.through | 74, 100 |
| abstract_inverted_index.trained | 155 |
| abstract_inverted_index.variety | 11 |
| abstract_inverted_index.(SSCVRA) | 141 |
| abstract_inverted_index.Computer | 137 |
| abstract_inverted_index.accuracy | 168 |
| abstract_inverted_index.advanced | 64 |
| abstract_inverted_index.approach | 132 |
| abstract_inverted_index.computer | 34, 55, 88 |
| abstract_inverted_index.conducts | 172 |
| abstract_inverted_index.context, | 129 |
| abstract_inverted_index.designed | 17 |
| abstract_inverted_index.diseases | 99 |
| abstract_inverted_index.eggplant | 150 |
| abstract_inverted_index.employed | 144 |
| abstract_inverted_index.focusing | 182 |
| abstract_inverted_index.infected | 114 |
| abstract_inverted_index.lesions, | 123 |
| abstract_inverted_index.machines | 20 |
| abstract_inverted_index.matching | 178 |
| abstract_inverted_index.multiple | 46, 206 |
| abstract_inverted_index.offering | 42 |
| abstract_inverted_index.relevant | 179 |
| abstract_inverted_index.resource | 82 |
| abstract_inverted_index.sectors, | 47 |
| abstract_inverted_index.symptoms | 148 |
| abstract_inverted_index.Abstract- | 0 |
| abstract_inverted_index.Algorithm | 140 |
| abstract_inverted_index.Bacterial | 212 |
| abstract_inverted_index.achieving | 164 |
| abstract_inverted_index.algorithm | 200 |
| abstract_inverted_index.analysis. | 237 |
| abstract_inverted_index.analyzing | 118 |
| abstract_inverted_index.automated | 111 |
| abstract_inverted_index.comparing | 191 |
| abstract_inverted_index.detection | 94, 105 |
| abstract_inverted_index.diagnosis | 222 |
| abstract_inverted_index.diseases, | 208 |
| abstract_inverted_index.features, | 181 |
| abstract_inverted_index.including | 48, 209 |
| abstract_inverted_index.optimized | 73 |
| abstract_inverted_index.practices | 71 |
| abstract_inverted_index.prominent | 85 |
| abstract_inverted_index.providing | 224 |
| abstract_inverted_index.subfield, | 41 |
| abstract_inverted_index.validated | 157 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.comprising | 161 |
| abstract_inverted_index.extracting | 176 |
| abstract_inverted_index.facilitate | 109 |
| abstract_inverted_index.impressive | 166 |
| abstract_inverted_index.indicators | 120 |
| abstract_inverted_index.integrates | 9 |
| abstract_inverted_index.likelihood | 232 |
| abstract_inverted_index.parameters | 185 |
| abstract_inverted_index.precision, | 80 |
| abstract_inverted_index.predictive | 27 |
| abstract_inverted_index.similarity | 229 |
| abstract_inverted_index.Recognition | 139 |
| abstract_inverted_index.agriculture | 67, 91 |
| abstract_inverted_index.application | 86 |
| abstract_inverted_index.color-based | 235 |
| abstract_inverted_index.consecutive | 193 |
| abstract_inverted_index.cultivation | 70 |
| abstract_inverted_index.efficiency. | 83 |
| abstract_inverted_index.integration | 51 |
| abstract_inverted_index.intelligent | 75 |
| abstract_inverted_index.overarching | 6 |
| abstract_inverted_index.specialized | 131 |
| abstract_inverted_index.substantial | 43 |
| abstract_inverted_index.techniques, | 13 |
| abstract_inverted_index.techniques. | 106 |
| abstract_inverted_index.traditional | 69 |
| abstract_inverted_index.Intelligence | 2 |
| abstract_inverted_index.agriculture. | 49 |
| abstract_inverted_index.quantitative | 225 |
| abstract_inverted_index.technologies | 76 |
| abstract_inverted_index.Visualization | 218 |
| abstract_inverted_index.contributions | 44 |
| abstract_inverted_index.productivity, | 79 |
| abstract_inverted_index.classification | 96, 102, 167 |
| abstract_inverted_index.distinguishing | 204 |
| abstract_inverted_index.identification | 112, 174 |
| abstract_inverted_index.decision-making | 29 |
| abstract_inverted_index.discolorations. | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.20876003 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |