Pavement crack analysis by referring to historical crack data based on multi-scale localization Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0235171
Pavement crack analysis, which deals with crack detection and crack growth detection, is a crucial task for modern Pavement Management Systems (PMS). This paper proposed a novel approach that uses historical crack data as reference for automatic pavement crack analysis. At first, a multi-scale localization method, which including GPS based coarse localization, image-level localization, and metric localization has been presented to establish image correspondences between historical and query crack images. Then historical crack pixels can be mapped onto the query crack image, and these mapped crack pixels are seen as high-quality seed points for crack analysis. Finally, crack analysis is accomplished by applying Region Growing Method (RGM) to further detect newly grown cracks. The proposed method has been tested with the actual pavement images collected in different time. The F-measure for crack growth is 88.9%, which demonstrates the proposed method has an ability to greatly simplify and enhances crack analysis result.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0235171
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printable
- OA Status
- gold
- Cited By
- 5
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3049488357
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3049488357Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0235171Digital Object Identifier
- Title
-
Pavement crack analysis by referring to historical crack data based on multi-scale localizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-14Full publication date if available
- Authors
-
Xianglong Wang, Hu Zhaozheng, Na Li, Lingqiao QinList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0235171Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printableDirect OA link when available
- Concepts
-
Metric (unit), Pixel, Computer science, Scale (ratio), Global Positioning System, Artificial intelligence, Computer vision, Engineering, Physics, Quantum mechanics, Operations management, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3049488357 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0235171 |
| ids.doi | https://doi.org/10.1371/journal.pone.0235171 |
| ids.mag | 3049488357 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32797112 |
| ids.openalex | https://openalex.org/W3049488357 |
| fwci | 0.14747214 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | Q000592 |
| mesh[1].descriptor_ui | D003252 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | standards |
| mesh[1].descriptor_name | Construction Materials |
| mesh[2].qualifier_ui | Q000592 |
| mesh[2].descriptor_ui | D000074266 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | standards |
| mesh[2].descriptor_name | Materials Science |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011786 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Quality Control |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D063809 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Satellite Imagery |
| mesh[5].qualifier_ui | Q000592 |
| mesh[5].descriptor_ui | D063809 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | standards |
| mesh[5].descriptor_name | Satellite Imagery |
| mesh[6].qualifier_ui | Q000592 |
| mesh[6].descriptor_ui | D014186 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | standards |
| mesh[6].descriptor_name | Transportation |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000465 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Algorithms |
| mesh[8].qualifier_ui | Q000592 |
| mesh[8].descriptor_ui | D003252 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | standards |
| mesh[8].descriptor_name | Construction Materials |
| mesh[9].qualifier_ui | Q000592 |
| mesh[9].descriptor_ui | D000074266 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | standards |
| mesh[9].descriptor_name | Materials Science |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D011786 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Quality Control |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D063809 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Satellite Imagery |
| mesh[12].qualifier_ui | Q000592 |
| mesh[12].descriptor_ui | D063809 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | standards |
| mesh[12].descriptor_name | Satellite Imagery |
| mesh[13].qualifier_ui | Q000592 |
| mesh[13].descriptor_ui | D014186 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | standards |
| mesh[13].descriptor_name | Transportation |
| type | article |
| title | Pavement crack analysis by referring to historical crack data based on multi-scale localization |
| awards[0].id | https://openalex.org/G6446501612 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | No.51679181 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 8 |
| biblio.volume | 15 |
| biblio.last_page | e0235171 |
| biblio.first_page | e0235171 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10264 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Asphalt Pavement Performance Evaluation |
| topics[2].id | https://openalex.org/T11850 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Concrete Corrosion and Durability |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C176217482 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6392096877098083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[0].display_name | Metric (unit) |
| concepts[1].id | https://openalex.org/C160633673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6242568492889404 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[1].display_name | Pixel |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6054997444152832 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5926306843757629 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C60229501 |
| concepts[4].level | 2 |
| concepts[4].score | 0.454026997089386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[4].display_name | Global Positioning System |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37845417857170105 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35932791233062744 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1391361951828003 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.059192657470703125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C21547014 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[10].display_name | Operations management |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/metric |
| keywords[0].score | 0.6392096877098083 |
| keywords[0].display_name | Metric (unit) |
| keywords[1].id | https://openalex.org/keywords/pixel |
| keywords[1].score | 0.6242568492889404 |
| keywords[1].display_name | Pixel |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6054997444152832 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5926306843757629 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/global-positioning-system |
| keywords[4].score | 0.454026997089386 |
| keywords[4].display_name | Global Positioning System |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.37845417857170105 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.35932791233062744 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.1391361951828003 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.059192657470703125 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0235171 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0235171 |
| locations[1].id | pmid:32797112 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32797112 |
| locations[2].id | pmh:oai:doaj.org/article:48c8a16b9ee3483ab359978ebf68e787 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 15, Iss 8, p e0235171 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/48c8a16b9ee3483ab359978ebf68e787 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:7428353 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS One |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7428353 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5016972208 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1086-5158 |
| authorships[0].author.display_name | Xianglong Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I196699116 |
| authorships[0].affiliations[0].raw_affiliation_string | ITS Research Center, Wuhan University of Technology, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I196699116 |
| authorships[0].institutions[0].ror | https://ror.org/03fe7t173 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I196699116 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuhan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xianglong Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | ITS Research Center, Wuhan University of Technology, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5101830477 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hu Zhaozheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I196699116 |
| authorships[1].affiliations[0].raw_affiliation_string | ITS Research Center, Wuhan University of Technology, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I196699116 |
| authorships[1].institutions[0].ror | https://ror.org/03fe7t173 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I196699116 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wuhan University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hu Zhaozheng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | ITS Research Center, Wuhan University of Technology, Wuhan, China |
| authorships[2].author.id | https://openalex.org/A5100368229 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-5127-5712 |
| authorships[2].author.display_name | Na Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I196699116 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation, Wuhan University of Technology, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I196699116 |
| authorships[2].institutions[0].ror | https://ror.org/03fe7t173 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I196699116 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Na Li |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Automation, Wuhan University of Technology, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5089043867 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2861-4090 |
| authorships[3].author.display_name | Lingqiao Qin |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[3].affiliations[0].raw_affiliation_string | TOPS Laboratory, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I135310074 |
| authorships[3].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lingqiao Qin |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | TOPS Laboratory, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States of America |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pavement crack analysis by referring to historical crack data based on multi-scale localization |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W3162200841, https://openalex.org/W2586280620, https://openalex.org/W2805505483, https://openalex.org/W2334071950, https://openalex.org/W2384744344, https://openalex.org/W4233932308, https://openalex.org/W1799694159, https://openalex.org/W2393169196, https://openalex.org/W2366610330, https://openalex.org/W4242143973 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0235171 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0235171 |
| primary_location.id | doi:10.1371/journal.pone.0235171 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235171&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0235171 |
| publication_date | 2020-08-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2385736048, https://openalex.org/W2808919226, https://openalex.org/W2905163589, https://openalex.org/W2597358295, https://openalex.org/W2890650144, https://openalex.org/W1993097837, https://openalex.org/W2090026077, https://openalex.org/W2474796106, https://openalex.org/W1862829300, https://openalex.org/W2316676669, https://openalex.org/W2788128679, https://openalex.org/W2618859419, https://openalex.org/W2132239597, https://openalex.org/W2292552783, https://openalex.org/W2189589649, https://openalex.org/W2142418482, https://openalex.org/W2748643398, https://openalex.org/W2167667767, https://openalex.org/W2565354498, https://openalex.org/W2144801789, https://openalex.org/W2889494142, https://openalex.org/W4297803008, https://openalex.org/W2939399833 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 13, 25, 42 |
| abstract_inverted_index.At | 40 |
| abstract_inverted_index.an | 141 |
| abstract_inverted_index.as | 33, 89 |
| abstract_inverted_index.be | 75 |
| abstract_inverted_index.by | 101 |
| abstract_inverted_index.in | 125 |
| abstract_inverted_index.is | 12, 99, 133 |
| abstract_inverted_index.to | 60, 107, 143 |
| abstract_inverted_index.GPS | 48 |
| abstract_inverted_index.The | 113, 128 |
| abstract_inverted_index.and | 8, 54, 66, 82, 146 |
| abstract_inverted_index.are | 87 |
| abstract_inverted_index.can | 74 |
| abstract_inverted_index.for | 16, 35, 93, 130 |
| abstract_inverted_index.has | 57, 116, 140 |
| abstract_inverted_index.the | 78, 120, 137 |
| abstract_inverted_index.Then | 70 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.been | 58, 117 |
| abstract_inverted_index.data | 32 |
| abstract_inverted_index.onto | 77 |
| abstract_inverted_index.seed | 91 |
| abstract_inverted_index.seen | 88 |
| abstract_inverted_index.task | 15 |
| abstract_inverted_index.that | 28 |
| abstract_inverted_index.uses | 29 |
| abstract_inverted_index.with | 5, 119 |
| abstract_inverted_index.(RGM) | 106 |
| abstract_inverted_index.based | 49 |
| abstract_inverted_index.crack | 1, 6, 9, 31, 38, 68, 72, 80, 85, 94, 97, 131, 148 |
| abstract_inverted_index.deals | 4 |
| abstract_inverted_index.grown | 111 |
| abstract_inverted_index.image | 62 |
| abstract_inverted_index.newly | 110 |
| abstract_inverted_index.novel | 26 |
| abstract_inverted_index.paper | 23 |
| abstract_inverted_index.query | 67, 79 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.time. | 127 |
| abstract_inverted_index.which | 3, 46, 135 |
| abstract_inverted_index.(PMS). | 21 |
| abstract_inverted_index.88.9%, | 134 |
| abstract_inverted_index.Method | 105 |
| abstract_inverted_index.Region | 103 |
| abstract_inverted_index.actual | 121 |
| abstract_inverted_index.coarse | 50 |
| abstract_inverted_index.detect | 109 |
| abstract_inverted_index.first, | 41 |
| abstract_inverted_index.growth | 10, 132 |
| abstract_inverted_index.image, | 81 |
| abstract_inverted_index.images | 123 |
| abstract_inverted_index.mapped | 76, 84 |
| abstract_inverted_index.method | 115, 139 |
| abstract_inverted_index.metric | 55 |
| abstract_inverted_index.modern | 17 |
| abstract_inverted_index.pixels | 73, 86 |
| abstract_inverted_index.points | 92 |
| abstract_inverted_index.tested | 118 |
| abstract_inverted_index.Growing | 104 |
| abstract_inverted_index.Systems | 20 |
| abstract_inverted_index.ability | 142 |
| abstract_inverted_index.between | 64 |
| abstract_inverted_index.cracks. | 112 |
| abstract_inverted_index.crucial | 14 |
| abstract_inverted_index.further | 108 |
| abstract_inverted_index.greatly | 144 |
| abstract_inverted_index.images. | 69 |
| abstract_inverted_index.method, | 45 |
| abstract_inverted_index.result. | 150 |
| abstract_inverted_index.Finally, | 96 |
| abstract_inverted_index.Pavement | 0, 18 |
| abstract_inverted_index.analysis | 98, 149 |
| abstract_inverted_index.applying | 102 |
| abstract_inverted_index.approach | 27 |
| abstract_inverted_index.enhances | 147 |
| abstract_inverted_index.pavement | 37, 122 |
| abstract_inverted_index.proposed | 24, 114, 138 |
| abstract_inverted_index.simplify | 145 |
| abstract_inverted_index.F-measure | 129 |
| abstract_inverted_index.analysis, | 2 |
| abstract_inverted_index.analysis. | 39, 95 |
| abstract_inverted_index.automatic | 36 |
| abstract_inverted_index.collected | 124 |
| abstract_inverted_index.detection | 7 |
| abstract_inverted_index.different | 126 |
| abstract_inverted_index.establish | 61 |
| abstract_inverted_index.including | 47 |
| abstract_inverted_index.presented | 59 |
| abstract_inverted_index.reference | 34 |
| abstract_inverted_index.Management | 19 |
| abstract_inverted_index.detection, | 11 |
| abstract_inverted_index.historical | 30, 65, 71 |
| abstract_inverted_index.image-level | 52 |
| abstract_inverted_index.multi-scale | 43 |
| abstract_inverted_index.accomplished | 100 |
| abstract_inverted_index.demonstrates | 136 |
| abstract_inverted_index.high-quality | 90 |
| abstract_inverted_index.localization | 44, 56 |
| abstract_inverted_index.localization, | 51, 53 |
| abstract_inverted_index.correspondences | 63 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101830477, https://openalex.org/A5089043867, https://openalex.org/A5016972208, https://openalex.org/A5100368229 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I135310074, https://openalex.org/I196699116 |
| citation_normalized_percentile.value | 0.47548423 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |