pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.52202/079017-4406
In ill-posed imaging inverse problems, there can exist many hypotheses that fit both the observed measurements and prior knowledge of the true image. Rather than returning just one hypothesis of that image, posterior samplers aim to explore the full solution space by generating many probable hypotheses, which can later be used to quantify uncertainty or construct recoveries that appropriately navigate the perception/distortion trade-off. In this work, we propose a fast and accurate posterior-sampling conditional generative adversarial network (cGAN) that, through a novel form of regularization, aims for correctness in the posterior mean as well as the trace and K principal components of the posterior covariance matrix. Numerical experiments demonstrate that our method outperforms contemporary cGANs and diffusion models in imaging inverse problems like denoising, large-scale inpainting, and accelerated MRI recovery. The code for our model can be found here: https://github.com/matt-bendel/pcaGAN.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.52202/079017-4406
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404345279
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404345279Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.52202/079017-4406Digital Object Identifier
- Title
-
pcaGAN: Improving Posterior-Sampling cGANs via Principal Component RegularizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Matthew C Bendel, R. Badlishah Ahmad, Philip SchniterList of authors in order
- Landing page
-
https://doi.org/10.52202/079017-4406Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.00605Direct OA link when available
- Concepts
-
Regularization (linguistics), Correctness, Inpainting, Principal component analysis, Computer science, Artificial intelligence, Sampling (signal processing), Covariance, Inverse, Mathematics, Inverse problem, Posterior probability, Pattern recognition (psychology), Image (mathematics), Algorithm, Computer vision, Statistics, Bayesian probability, Filter (signal processing), Mathematical analysis, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404345279 |
|---|---|
| doi | https://doi.org/10.52202/079017-4406 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.00605 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40406588 |
| ids.openalex | https://openalex.org/W4404345279 |
| fwci | 0.0 |
| type | article |
| title | pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization |
| biblio.issue | |
| biblio.volume | 37 |
| biblio.last_page | 138890 |
| biblio.first_page | 138859 |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9850000143051147 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9699000120162964 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9366000294685364 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776135515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6333272457122803 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[0].display_name | Regularization (linguistics) |
| concepts[1].id | https://openalex.org/C55439883 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6206251978874207 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q360812 |
| concepts[1].display_name | Correctness |
| concepts[2].id | https://openalex.org/C11727466 |
| concepts[2].level | 3 |
| concepts[2].score | 0.552851140499115 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[2].display_name | Inpainting |
| concepts[3].id | https://openalex.org/C27438332 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5054600238800049 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[3].display_name | Principal component analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5023939609527588 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4810669422149658 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C140779682 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4793977737426758 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[6].display_name | Sampling (signal processing) |
| concepts[7].id | https://openalex.org/C178650346 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4758581519126892 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[7].display_name | Covariance |
| concepts[8].id | https://openalex.org/C207467116 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4647625684738159 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[8].display_name | Inverse |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4422568082809448 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C135252773 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43747425079345703 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[10].display_name | Inverse problem |
| concepts[11].id | https://openalex.org/C57830394 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4365699589252472 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q278079 |
| concepts[11].display_name | Posterior probability |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.40435171127319336 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.393858939409256 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3291395902633667 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2348407804965973 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1689416766166687 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C107673813 |
| concepts[17].level | 2 |
| concepts[17].score | 0.1141836941242218 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[17].display_name | Bayesian probability |
| concepts[18].id | https://openalex.org/C106131492 |
| concepts[18].level | 2 |
| concepts[18].score | 0.08306169509887695 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[18].display_name | Filter (signal processing) |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/regularization |
| keywords[0].score | 0.6333272457122803 |
| keywords[0].display_name | Regularization (linguistics) |
| keywords[1].id | https://openalex.org/keywords/correctness |
| keywords[1].score | 0.6206251978874207 |
| keywords[1].display_name | Correctness |
| keywords[2].id | https://openalex.org/keywords/inpainting |
| keywords[2].score | 0.552851140499115 |
| keywords[2].display_name | Inpainting |
| keywords[3].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[3].score | 0.5054600238800049 |
| keywords[3].display_name | Principal component analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5023939609527588 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4810669422149658 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/sampling |
| keywords[6].score | 0.4793977737426758 |
| keywords[6].display_name | Sampling (signal processing) |
| keywords[7].id | https://openalex.org/keywords/covariance |
| keywords[7].score | 0.4758581519126892 |
| keywords[7].display_name | Covariance |
| keywords[8].id | https://openalex.org/keywords/inverse |
| keywords[8].score | 0.4647625684738159 |
| keywords[8].display_name | Inverse |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.4422568082809448 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/inverse-problem |
| keywords[10].score | 0.43747425079345703 |
| keywords[10].display_name | Inverse problem |
| keywords[11].id | https://openalex.org/keywords/posterior-probability |
| keywords[11].score | 0.4365699589252472 |
| keywords[11].display_name | Posterior probability |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.40435171127319336 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.393858939409256 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.3291395902633667 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/computer-vision |
| keywords[15].score | 0.2348407804965973 |
| keywords[15].display_name | Computer vision |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.1689416766166687 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/bayesian-probability |
| keywords[17].score | 0.1141836941242218 |
| keywords[17].display_name | Bayesian probability |
| keywords[18].id | https://openalex.org/keywords/filter |
| keywords[18].score | 0.08306169509887695 |
| keywords[18].display_name | Filter (signal processing) |
| language | en |
| locations[0].id | doi:10.52202/079017-4406 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in Neural Information Processing Systems 37 |
| locations[0].landing_page_url | https://doi.org/10.52202/079017-4406 |
| locations[1].id | pmid:40406588 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Advances in neural information processing systems |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40406588 |
| locations[2].id | pmh:oai:arXiv.org:2411.00605 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2411.00605 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2411.00605 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12097806 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Adv Neural Inf Process Syst |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12097806 |
| locations[4].id | doi:10.48550/arxiv.2411.00605 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.2411.00605 |
| indexed_in | arxiv, crossref, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5052243133 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Matthew C Bendel |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I52357470 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. ECE, The Ohio State University, Columbus, OH 43210. |
| authorships[0].institutions[0].id | https://openalex.org/I52357470 |
| authorships[0].institutions[0].ror | https://ror.org/00rs6vg23 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I52357470 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The Ohio State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew C Bendel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. ECE, The Ohio State University, Columbus, OH 43210. |
| authorships[1].author.id | https://openalex.org/A5100348176 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4862-2728 |
| authorships[1].author.display_name | R. Badlishah Ahmad |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I52357470 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. BME, The Ohio State University, Columbus, OH 43210. |
| authorships[1].institutions[0].id | https://openalex.org/I52357470 |
| authorships[1].institutions[0].ror | https://ror.org/00rs6vg23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I52357470 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The Ohio State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rizwan Ahmad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. BME, The Ohio State University, Columbus, OH 43210. |
| authorships[2].author.id | https://openalex.org/A5045693581 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0939-7545 |
| authorships[2].author.display_name | Philip Schniter |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I52357470 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. ECE, The Ohio State University, Columbus, OH 43210. |
| authorships[2].institutions[0].id | https://openalex.org/I52357470 |
| authorships[2].institutions[0].ror | https://ror.org/00rs6vg23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I52357470 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The Ohio State University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Philip Schniter |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. ECE, The Ohio State University, Columbus, OH 43210. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.00605 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-14T00:00:00 |
| display_name | pcaGAN: Improving Posterior-Sampling cGANs via Principal Component Regularization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9850000143051147 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2242874198, https://openalex.org/W1965977581, https://openalex.org/W2061980133, https://openalex.org/W2050855072, https://openalex.org/W2077506191, https://openalex.org/W2387685679, https://openalex.org/W3134728064, https://openalex.org/W2115238236, https://openalex.org/W2374214022, https://openalex.org/W2347781941 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.00605 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.00605 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.00605 |
| primary_location.id | doi:10.52202/079017-4406 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in Neural Information Processing Systems 37 |
| primary_location.landing_page_url | https://doi.org/10.52202/079017-4406 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.K | 98 |
| abstract_inverted_index.a | 68, 80 |
| abstract_inverted_index.In | 0, 63 |
| abstract_inverted_index.as | 92, 94 |
| abstract_inverted_index.be | 49, 136 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.in | 88, 118 |
| abstract_inverted_index.of | 19, 29, 83, 101 |
| abstract_inverted_index.or | 54 |
| abstract_inverted_index.to | 35, 51 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.MRI | 128 |
| abstract_inverted_index.The | 130 |
| abstract_inverted_index.aim | 34 |
| abstract_inverted_index.and | 16, 70, 97, 115, 126 |
| abstract_inverted_index.can | 6, 47, 135 |
| abstract_inverted_index.fit | 11 |
| abstract_inverted_index.for | 86, 132 |
| abstract_inverted_index.one | 27 |
| abstract_inverted_index.our | 110, 133 |
| abstract_inverted_index.the | 13, 20, 37, 60, 89, 95, 102 |
| abstract_inverted_index.aims | 85 |
| abstract_inverted_index.both | 12 |
| abstract_inverted_index.code | 131 |
| abstract_inverted_index.fast | 69 |
| abstract_inverted_index.form | 82 |
| abstract_inverted_index.full | 38 |
| abstract_inverted_index.just | 26 |
| abstract_inverted_index.like | 122 |
| abstract_inverted_index.many | 8, 43 |
| abstract_inverted_index.mean | 91 |
| abstract_inverted_index.than | 24 |
| abstract_inverted_index.that | 10, 30, 57, 109 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.true | 21 |
| abstract_inverted_index.used | 50 |
| abstract_inverted_index.well | 93 |
| abstract_inverted_index.cGANs | 114 |
| abstract_inverted_index.exist | 7 |
| abstract_inverted_index.found | 137 |
| abstract_inverted_index.here: | 138 |
| abstract_inverted_index.later | 48 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.prior | 17 |
| abstract_inverted_index.space | 40 |
| abstract_inverted_index.that, | 78 |
| abstract_inverted_index.there | 5 |
| abstract_inverted_index.trace | 96 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.work, | 65 |
| abstract_inverted_index.(cGAN) | 77 |
| abstract_inverted_index.Rather | 23 |
| abstract_inverted_index.image, | 31 |
| abstract_inverted_index.image. | 22 |
| abstract_inverted_index.method | 111 |
| abstract_inverted_index.models | 117 |
| abstract_inverted_index.explore | 36 |
| abstract_inverted_index.imaging | 2, 119 |
| abstract_inverted_index.inverse | 3, 120 |
| abstract_inverted_index.matrix. | 105 |
| abstract_inverted_index.network | 76 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.through | 79 |
| abstract_inverted_index.accurate | 71 |
| abstract_inverted_index.navigate | 59 |
| abstract_inverted_index.observed | 14 |
| abstract_inverted_index.probable | 44 |
| abstract_inverted_index.problems | 121 |
| abstract_inverted_index.quantify | 52 |
| abstract_inverted_index.samplers | 33 |
| abstract_inverted_index.solution | 39 |
| abstract_inverted_index.Numerical | 106 |
| abstract_inverted_index.construct | 55 |
| abstract_inverted_index.diffusion | 116 |
| abstract_inverted_index.ill-posed | 1 |
| abstract_inverted_index.knowledge | 18 |
| abstract_inverted_index.posterior | 32, 90, 103 |
| abstract_inverted_index.principal | 99 |
| abstract_inverted_index.problems, | 4 |
| abstract_inverted_index.recovery. | 129 |
| abstract_inverted_index.returning | 25 |
| abstract_inverted_index.components | 100 |
| abstract_inverted_index.covariance | 104 |
| abstract_inverted_index.denoising, | 123 |
| abstract_inverted_index.generating | 42 |
| abstract_inverted_index.generative | 74 |
| abstract_inverted_index.hypotheses | 9 |
| abstract_inverted_index.hypothesis | 28 |
| abstract_inverted_index.recoveries | 56 |
| abstract_inverted_index.trade-off. | 62 |
| abstract_inverted_index.accelerated | 127 |
| abstract_inverted_index.adversarial | 75 |
| abstract_inverted_index.conditional | 73 |
| abstract_inverted_index.correctness | 87 |
| abstract_inverted_index.demonstrate | 108 |
| abstract_inverted_index.experiments | 107 |
| abstract_inverted_index.hypotheses, | 45 |
| abstract_inverted_index.inpainting, | 125 |
| abstract_inverted_index.large-scale | 124 |
| abstract_inverted_index.outperforms | 112 |
| abstract_inverted_index.uncertainty | 53 |
| abstract_inverted_index.contemporary | 113 |
| abstract_inverted_index.measurements | 15 |
| abstract_inverted_index.appropriately | 58 |
| abstract_inverted_index.regularization, | 84 |
| abstract_inverted_index.posterior-sampling | 72 |
| abstract_inverted_index.perception/distortion | 61 |
| abstract_inverted_index.https://github.com/matt-bendel/pcaGAN. | 139 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.25637818 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |