PCRNet+: A Point Cloud Alignment Algorithm Introducing Dynamic Graph Convolutional Neural Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/electronics14050972
In this paper, an improved point cloud alignment network based on PCRNet is proposed. In the improved model, DGCNN is used as a feature extractor to capture the local and global geometric features of the point cloud, and a fully connected layer is used for feature fusion and rigid-body transformation parameter prediction. Compared with the original PCRNet, the improved network shows higher accuracy and robustness in the point cloud alignment task. In order to verify the performance of the improved network, two classical algorithms, ICP and FGR, are used as benchmarks in our experiment, and experimental comparisons of PCRNet and its improved version are performed under noise-free and noise-containing conditions, respectively. The experimental results show that the improved network (PCRNet+) proposed in our approach outperforms the original PCRNet under different test conditions, including experiments conducted in noise-free, noise-containing, and occlusion scenarios. Specifically, under noise-containing conditions, PCRNet+ surpasses the next-best algorithm, FGR, by over 95.9% across three key metrics. In occlusion scenarios, PCRNet+ achieves more than 100% improvement in all evaluated metrics compared to FGR.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics14050972
- https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140
- OA Status
- gold
- Cited By
- 2
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408051546
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408051546Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics14050972Digital Object Identifier
- Title
-
PCRNet+: A Point Cloud Alignment Algorithm Introducing Dynamic Graph Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-28Full publication date if available
- Authors
-
T. Y. Qi, Yingchun Li, Jing Tian, Hang ChenList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics14050972Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Point cloud, Cloud computing, Algorithm, Graph, Artificial intelligence, Theoretical computer science, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408051546 |
|---|---|
| doi | https://doi.org/10.3390/electronics14050972 |
| ids.doi | https://doi.org/10.3390/electronics14050972 |
| ids.openalex | https://openalex.org/W4408051546 |
| fwci | 8.18351701 |
| type | article |
| title | PCRNet+: A Point Cloud Alignment Algorithm Introducing Dynamic Graph Convolutional Neural Networks |
| awards[0].id | https://openalex.org/G7626489592 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62005320 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 5 |
| biblio.volume | 14 |
| biblio.last_page | 972 |
| biblio.first_page | 972 |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7152491807937622 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7077180743217468 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C131979681 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6970272064208984 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[2].display_name | Point cloud |
| concepts[3].id | https://openalex.org/C79974875 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5687002539634705 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[3].display_name | Cloud computing |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4993479251861572 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49674469232559204 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39243051409721375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3042182922363281 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7152491807937622 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7077180743217468 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/point-cloud |
| keywords[2].score | 0.6970272064208984 |
| keywords[2].display_name | Point cloud |
| keywords[3].id | https://openalex.org/keywords/cloud-computing |
| keywords[3].score | 0.5687002539634705 |
| keywords[3].display_name | Cloud computing |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4993479251861572 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.49674469232559204 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.39243051409721375 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.3042182922363281 |
| keywords[7].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.3390/electronics14050972 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics14050972 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061646993 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6030-7405 |
| authorships[0].author.display_name | T. Y. Qi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101416, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[0].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Space Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Te Qi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101416, China |
| authorships[1].author.id | https://openalex.org/A5109536295 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5247-0758 |
| authorships[1].author.display_name | Yingchun Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101416, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[1].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Space Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingchun Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101416, China |
| authorships[2].author.id | https://openalex.org/A5101935214 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7442-352X |
| authorships[2].author.display_name | Jing Tian |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210166112 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Institute of Remote Sensing Information, Beijing 100192, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210166112 |
| authorships[2].institutions[0].ror | https://ror.org/05wzjqa24 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210166112 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Key Laboratory of Remote Sensing Science |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jing Tian |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Institute of Remote Sensing Information, Beijing 100192, China |
| authorships[3].author.id | https://openalex.org/A5100442524 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6356-3930 |
| authorships[3].author.display_name | Hang Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210148107 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Space Information, Space Engineering University, Beijing 101416, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210148107 |
| authorships[3].institutions[0].ror | https://ror.org/04rj1td02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210148107 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Space Engineering University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hang Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Space Information, Space Engineering University, Beijing 101416, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PCRNet+: A Point Cloud Alignment Algorithm Introducing Dynamic Graph Convolutional Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W4244478748, https://openalex.org/W3150465815, https://openalex.org/W4223488648, https://openalex.org/W2134969820, https://openalex.org/W2251605416, https://openalex.org/W1997222214, https://openalex.org/W2560439919, https://openalex.org/W4389340727, https://openalex.org/W2802581102, https://openalex.org/W4205786897 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics14050972 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics14050972 |
| primary_location.id | doi:10.3390/electronics14050972 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/14/5/972/pdf?version=1740733140 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics14050972 |
| publication_date | 2025-02-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2049981393, https://openalex.org/W6817117944, https://openalex.org/W2519911873, https://openalex.org/W6640300118, https://openalex.org/W2963264709, https://openalex.org/W6769275068, https://openalex.org/W2150190641, https://openalex.org/W2944143243, https://openalex.org/W2950642167, https://openalex.org/W4362709308, https://openalex.org/W3119958896, https://openalex.org/W3013243617, https://openalex.org/W6967141601, https://openalex.org/W4360996009, https://openalex.org/W4392940686, https://openalex.org/W2152864241, https://openalex.org/W2563408008, https://openalex.org/W2979750740, https://openalex.org/W2567309586, https://openalex.org/W3035338950 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 22, 38 |
| abstract_inverted_index.In | 0, 14, 71, 158 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 21, 89 |
| abstract_inverted_index.by | 151 |
| abstract_inverted_index.in | 65, 91, 121, 135, 167 |
| abstract_inverted_index.is | 12, 19, 42 |
| abstract_inverted_index.of | 33, 77, 97 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.to | 25, 73, 172 |
| abstract_inverted_index.ICP | 84 |
| abstract_inverted_index.The | 111 |
| abstract_inverted_index.all | 168 |
| abstract_inverted_index.and | 29, 37, 47, 63, 85, 94, 99, 107, 138 |
| abstract_inverted_index.are | 87, 103 |
| abstract_inverted_index.for | 44 |
| abstract_inverted_index.its | 100 |
| abstract_inverted_index.key | 156 |
| abstract_inverted_index.our | 92, 122 |
| abstract_inverted_index.the | 15, 27, 34, 54, 57, 66, 75, 78, 116, 125, 147 |
| abstract_inverted_index.two | 81 |
| abstract_inverted_index.100% | 165 |
| abstract_inverted_index.FGR, | 86, 150 |
| abstract_inverted_index.FGR. | 173 |
| abstract_inverted_index.more | 163 |
| abstract_inverted_index.over | 152 |
| abstract_inverted_index.show | 114 |
| abstract_inverted_index.test | 130 |
| abstract_inverted_index.than | 164 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.used | 20, 43, 88 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.95.9% | 153 |
| abstract_inverted_index.DGCNN | 18 |
| abstract_inverted_index.based | 9 |
| abstract_inverted_index.cloud | 6, 68 |
| abstract_inverted_index.fully | 39 |
| abstract_inverted_index.layer | 41 |
| abstract_inverted_index.local | 28 |
| abstract_inverted_index.order | 72 |
| abstract_inverted_index.point | 5, 35, 67 |
| abstract_inverted_index.shows | 60 |
| abstract_inverted_index.task. | 70 |
| abstract_inverted_index.three | 155 |
| abstract_inverted_index.under | 105, 128, 142 |
| abstract_inverted_index.PCRNet | 11, 98, 127 |
| abstract_inverted_index.across | 154 |
| abstract_inverted_index.cloud, | 36 |
| abstract_inverted_index.fusion | 46 |
| abstract_inverted_index.global | 30 |
| abstract_inverted_index.higher | 61 |
| abstract_inverted_index.model, | 17 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.verify | 74 |
| abstract_inverted_index.PCRNet+ | 145, 161 |
| abstract_inverted_index.PCRNet, | 56 |
| abstract_inverted_index.capture | 26 |
| abstract_inverted_index.feature | 23, 45 |
| abstract_inverted_index.metrics | 170 |
| abstract_inverted_index.network | 8, 59, 118 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.version | 102 |
| abstract_inverted_index.Compared | 52 |
| abstract_inverted_index.accuracy | 62 |
| abstract_inverted_index.achieves | 162 |
| abstract_inverted_index.approach | 123 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.features | 32 |
| abstract_inverted_index.improved | 4, 16, 58, 79, 101, 117 |
| abstract_inverted_index.metrics. | 157 |
| abstract_inverted_index.network, | 80 |
| abstract_inverted_index.original | 55, 126 |
| abstract_inverted_index.proposed | 120 |
| abstract_inverted_index.(PCRNet+) | 119 |
| abstract_inverted_index.alignment | 7, 69 |
| abstract_inverted_index.classical | 82 |
| abstract_inverted_index.conducted | 134 |
| abstract_inverted_index.connected | 40 |
| abstract_inverted_index.different | 129 |
| abstract_inverted_index.evaluated | 169 |
| abstract_inverted_index.extractor | 24 |
| abstract_inverted_index.geometric | 31 |
| abstract_inverted_index.including | 132 |
| abstract_inverted_index.next-best | 148 |
| abstract_inverted_index.occlusion | 139, 159 |
| abstract_inverted_index.parameter | 50 |
| abstract_inverted_index.performed | 104 |
| abstract_inverted_index.proposed. | 13 |
| abstract_inverted_index.surpasses | 146 |
| abstract_inverted_index.algorithm, | 149 |
| abstract_inverted_index.benchmarks | 90 |
| abstract_inverted_index.noise-free | 106 |
| abstract_inverted_index.rigid-body | 48 |
| abstract_inverted_index.robustness | 64 |
| abstract_inverted_index.scenarios, | 160 |
| abstract_inverted_index.scenarios. | 140 |
| abstract_inverted_index.algorithms, | 83 |
| abstract_inverted_index.comparisons | 96 |
| abstract_inverted_index.conditions, | 109, 131, 144 |
| abstract_inverted_index.experiment, | 93 |
| abstract_inverted_index.experiments | 133 |
| abstract_inverted_index.improvement | 166 |
| abstract_inverted_index.noise-free, | 136 |
| abstract_inverted_index.outperforms | 124 |
| abstract_inverted_index.performance | 76 |
| abstract_inverted_index.prediction. | 51 |
| abstract_inverted_index.experimental | 95, 112 |
| abstract_inverted_index.Specifically, | 141 |
| abstract_inverted_index.respectively. | 110 |
| abstract_inverted_index.transformation | 49 |
| abstract_inverted_index.noise-containing | 108, 143 |
| abstract_inverted_index.noise-containing, | 137 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.91670363 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |