Pedestrian intention estimation and trajectory prediction based on data and knowledge‐driven method Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1049/itr2.12453
With the development of deep learning technology, the problem of data‐driven trajectory prediction and intention recognition has been widely studied. However, the pedestrian trajectory prediction and intention recognition methods based solely on data‐driven have weak data description ability and black‐box characteristics, which cannot reason about pedestrian crossing intention and predict pedestrian crossing trajectory as humans do. To address the above problems, the authors proposed a data and knowledge‐driven pedestrian intention estimation and trajectory prediction method by imitating human cognitive mechanisms. In the pedestrian intention inference process, the authors adopted the knowledge‐driven method. As a first step, the authors built a knowledge graph of pedestrian crossing scenes, and then paired it with a Bayesian network to estimate pedestrian crossing intentions. In the pedestrian trajectory prediction process, the authors used a data‐driven approach, combining pedestrian crossing trajectory features and knowledge‐based pedestrian intentions. Experiments show that all evaluation metrics of pedestrian trajectory prediction were improved after adding pedestrian intentions obtained by knowledge‐driven.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/itr2.12453
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453
- OA Status
- gold
- Cited By
- 8
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389143344
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389143344Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/itr2.12453Digital Object Identifier
- Title
-
Pedestrian intention estimation and trajectory prediction based on data and knowledge‐driven methodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-29Full publication date if available
- Authors
-
Jincao Zhou, Xin Bai, Weiping Fu, Benyu Ning, Rui LiList of authors in order
- Landing page
-
https://doi.org/10.1049/itr2.12453Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453Direct OA link when available
- Concepts
-
Pedestrian, Trajectory, Inference, Computer science, Artificial intelligence, Process (computing), Machine learning, Pedestrian crossing, Data mining, Engineering, Transport engineering, Operating system, Physics, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389143344 |
|---|---|
| doi | https://doi.org/10.1049/itr2.12453 |
| ids.doi | https://doi.org/10.1049/itr2.12453 |
| ids.openalex | https://openalex.org/W4389143344 |
| fwci | 1.30848959 |
| type | article |
| title | Pedestrian intention estimation and trajectory prediction based on data and knowledge‐driven method |
| awards[0].id | https://openalex.org/G3572946695 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52202501 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6753014229 |
| awards[1].funder_id | https://openalex.org/F4320336567 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2022JQ‐546 |
| awards[1].funder_display_name | Natural Science Basic Research Program of Shaanxi Province |
| biblio.issue | 2 |
| biblio.volume | 18 |
| biblio.last_page | 331 |
| biblio.first_page | 315 |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10370 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Traffic and Road Safety |
| topics[2].id | https://openalex.org/T11344 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9891999959945679 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Traffic Prediction and Management Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320336567 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Basic Research Program of Shaanxi Province |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C2777113093 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9202010631561279 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q221488 |
| concepts[0].display_name | Pedestrian |
| concepts[1].id | https://openalex.org/C13662910 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8179013729095459 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[1].display_name | Trajectory |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6939812898635864 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6678632497787476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.529964029788971 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.525178074836731 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48879286646842957 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2777819797 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45059168338775635 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8010 |
| concepts[7].display_name | Pedestrian crossing |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35576745867729187 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19669917225837708 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C22212356 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12072339653968811 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[10].display_name | Transport engineering |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C1276947 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[13].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/pedestrian |
| keywords[0].score | 0.9202010631561279 |
| keywords[0].display_name | Pedestrian |
| keywords[1].id | https://openalex.org/keywords/trajectory |
| keywords[1].score | 0.8179013729095459 |
| keywords[1].display_name | Trajectory |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.6939812898635864 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6678632497787476 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.529964029788971 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.525178074836731 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.48879286646842957 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/pedestrian-crossing |
| keywords[7].score | 0.45059168338775635 |
| keywords[7].display_name | Pedestrian crossing |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.35576745867729187 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.19669917225837708 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/transport-engineering |
| keywords[10].score | 0.12072339653968811 |
| keywords[10].display_name | Transport engineering |
| language | en |
| locations[0].id | doi:10.1049/itr2.12453 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S155689059 |
| locations[0].source.issn | 1751-956X, 1751-9578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1751-956X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Intelligent Transport Systems |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Intelligent Transport Systems |
| locations[0].landing_page_url | https://doi.org/10.1049/itr2.12453 |
| locations[1].id | pmh:oai:doaj.org/article:6a762e27ceb5404e977e160701234c4a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IET Intelligent Transport Systems, Vol 18, Iss 2, Pp 315-331 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/6a762e27ceb5404e977e160701234c4a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5076675083 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4087-9414 |
| authorships[0].author.display_name | Jincao Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jincao Zhou |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[1].author.id | https://openalex.org/A5101691903 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-9495-9614 |
| authorships[1].author.display_name | Xin Bai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Bai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5101938303 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9803-3908 |
| authorships[2].author.display_name | Weiping Fu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210129906 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Engineering, Xi'an International University, Xi'an, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210131919 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an University of Technology |
| authorships[2].institutions[1].id | https://openalex.org/I4210129906 |
| authorships[2].institutions[1].ror | https://ror.org/02w30qy89 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210129906 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Xi’an International University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weiping Fu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Engineering, Xi'an International University, Xi'an, China, College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[3].author.id | https://openalex.org/A5101272906 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Benyu Ning |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[3].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Benyu Ning |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[4].author.id | https://openalex.org/A5100448602 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1329-9817 |
| authorships[4].author.display_name | Rui Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[4].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi'an University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rui Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pedestrian intention estimation and trajectory prediction based on data and knowledge‐driven method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W187110833, https://openalex.org/W2905794575, https://openalex.org/W122740207, https://openalex.org/W4388221821, https://openalex.org/W650967530, https://openalex.org/W4390813505, https://openalex.org/W1969216335, https://openalex.org/W1486225309, https://openalex.org/W3172487415, https://openalex.org/W3165055438 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/itr2.12453 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S155689059 |
| best_oa_location.source.issn | 1751-956X, 1751-9578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1751-956X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Intelligent Transport Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Intelligent Transport Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1049/itr2.12453 |
| primary_location.id | doi:10.1049/itr2.12453 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S155689059 |
| primary_location.source.issn | 1751-956X, 1751-9578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1751-956X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Intelligent Transport Systems |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/itr2.12453 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Intelligent Transport Systems |
| primary_location.landing_page_url | https://doi.org/10.1049/itr2.12453 |
| publication_date | 2023-11-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3207009201, https://openalex.org/W3047375952, https://openalex.org/W3011462663, https://openalex.org/W2981207549, https://openalex.org/W2759133817, https://openalex.org/W2991107095, https://openalex.org/W2991484432, https://openalex.org/W4281609631, https://openalex.org/W2963697717, https://openalex.org/W4280494683, https://openalex.org/W3089187084, https://openalex.org/W2047203401, https://openalex.org/W2896127393, https://openalex.org/W3159019800, https://openalex.org/W3166395208, https://openalex.org/W4206724214, https://openalex.org/W1579387951, https://openalex.org/W2738279610, https://openalex.org/W2807456624, https://openalex.org/W2758850938, https://openalex.org/W2167052694, https://openalex.org/W2904712544, https://openalex.org/W2894862592, https://openalex.org/W3012055358, https://openalex.org/W3009470421, https://openalex.org/W3139431089, https://openalex.org/W3119540085, https://openalex.org/W4322503895, https://openalex.org/W4221029045, https://openalex.org/W4288063780, https://openalex.org/W2581879608, https://openalex.org/W3035564946, https://openalex.org/W3035172746, https://openalex.org/W3035574168, https://openalex.org/W2424778531, https://openalex.org/W2980439114, https://openalex.org/W3197849985 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 65, 94, 100, 112, 129 |
| abstract_inverted_index.As | 93 |
| abstract_inverted_index.In | 81, 120 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.by | 76, 158 |
| abstract_inverted_index.it | 110 |
| abstract_inverted_index.of | 4, 10, 103, 147 |
| abstract_inverted_index.on | 32 |
| abstract_inverted_index.to | 115 |
| abstract_inverted_index.all | 144 |
| abstract_inverted_index.and | 14, 26, 39, 49, 67, 72, 107, 137 |
| abstract_inverted_index.do. | 56 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.the | 2, 8, 22, 59, 62, 82, 87, 90, 97, 121, 126 |
| abstract_inverted_index.With | 1 |
| abstract_inverted_index.been | 18 |
| abstract_inverted_index.data | 36, 66 |
| abstract_inverted_index.deep | 5 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.show | 142 |
| abstract_inverted_index.that | 143 |
| abstract_inverted_index.then | 108 |
| abstract_inverted_index.used | 128 |
| abstract_inverted_index.weak | 35 |
| abstract_inverted_index.were | 151 |
| abstract_inverted_index.with | 111 |
| abstract_inverted_index.about | 45 |
| abstract_inverted_index.above | 60 |
| abstract_inverted_index.after | 153 |
| abstract_inverted_index.based | 30 |
| abstract_inverted_index.built | 99 |
| abstract_inverted_index.first | 95 |
| abstract_inverted_index.graph | 102 |
| abstract_inverted_index.human | 78 |
| abstract_inverted_index.step, | 96 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.adding | 154 |
| abstract_inverted_index.cannot | 43 |
| abstract_inverted_index.humans | 55 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.paired | 109 |
| abstract_inverted_index.reason | 44 |
| abstract_inverted_index.solely | 31 |
| abstract_inverted_index.widely | 19 |
| abstract_inverted_index.ability | 38 |
| abstract_inverted_index.address | 58 |
| abstract_inverted_index.adopted | 89 |
| abstract_inverted_index.authors | 63, 88, 98, 127 |
| abstract_inverted_index.method. | 92 |
| abstract_inverted_index.methods | 29 |
| abstract_inverted_index.metrics | 146 |
| abstract_inverted_index.network | 114 |
| abstract_inverted_index.predict | 50 |
| abstract_inverted_index.problem | 9 |
| abstract_inverted_index.scenes, | 106 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 113 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.crossing | 47, 52, 105, 118, 134 |
| abstract_inverted_index.estimate | 116 |
| abstract_inverted_index.features | 136 |
| abstract_inverted_index.improved | 152 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.obtained | 157 |
| abstract_inverted_index.process, | 86, 125 |
| abstract_inverted_index.proposed | 64 |
| abstract_inverted_index.studied. | 20 |
| abstract_inverted_index.approach, | 131 |
| abstract_inverted_index.cognitive | 79 |
| abstract_inverted_index.combining | 132 |
| abstract_inverted_index.imitating | 77 |
| abstract_inverted_index.inference | 85 |
| abstract_inverted_index.intention | 15, 27, 48, 70, 84 |
| abstract_inverted_index.knowledge | 101 |
| abstract_inverted_index.problems, | 61 |
| abstract_inverted_index.estimation | 71 |
| abstract_inverted_index.evaluation | 145 |
| abstract_inverted_index.intentions | 156 |
| abstract_inverted_index.pedestrian | 23, 46, 51, 69, 83, 104, 117, 122, 133, 139, 148, 155 |
| abstract_inverted_index.prediction | 13, 25, 74, 124, 150 |
| abstract_inverted_index.trajectory | 12, 24, 53, 73, 123, 135, 149 |
| abstract_inverted_index.Experiments | 141 |
| abstract_inverted_index.black‐box | 40 |
| abstract_inverted_index.description | 37 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.intentions. | 119, 140 |
| abstract_inverted_index.mechanisms. | 80 |
| abstract_inverted_index.recognition | 16, 28 |
| abstract_inverted_index.technology, | 7 |
| abstract_inverted_index.data‐driven | 11, 33, 130 |
| abstract_inverted_index.characteristics, | 41 |
| abstract_inverted_index.knowledge‐based | 138 |
| abstract_inverted_index.knowledge‐driven | 68, 91 |
| abstract_inverted_index.knowledge‐driven. | 159 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5076675083 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210131919 |
| citation_normalized_percentile.value | 0.76883467 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |