Pedestrian Stride Length Estimation from IMU Measurements and ANN Based Algorithm Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1155/2017/6091261
Pedestrian dead reckoning (PDR) can be used for continuous position estimation when satellite or other radio signals are not available, and the accuracy of the stride length measurement is important. Current stride length estimation algorithms, including linear and nonlinear models, consider a few variable factors, and some rely on high precision and high cost equipment. This paper puts forward a stride length estimation algorithm based on a back propagation artificial neural network (BP-ANN), using a consumer-grade inertial measurement unit (IMU); it then discusses various factors in the algorithm. The experimental results indicate that the error of the proposed algorithm in estimating the stride length is approximately 2%, which is smaller than that of the frequency and nonlinear models. Compared with the latter two models, the proposed algorithm does not need to determine individual parameters in advance if the trained neural net is effective. It can, thus, be concluded that this algorithm shows superior performance in estimating pedestrian stride length.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2017/6091261
- http://downloads.hindawi.com/journals/js/2017/6091261.pdf
- OA Status
- hybrid
- Cited By
- 72
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2586574952
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2586574952Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2017/6091261Digital Object Identifier
- Title
-
Pedestrian Stride Length Estimation from IMU Measurements and ANN Based AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Haifeng Xing, Jinglong Li, Bo Hou, Yongjian Zhang, Meifeng GuoList of authors in order
- Landing page
-
https://doi.org/10.1155/2017/6091261Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/js/2017/6091261.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/js/2017/6091261.pdfDirect OA link when available
- Concepts
-
STRIDE, Inertial measurement unit, Step detection, Algorithm, Dead reckoning, Nonlinear system, Computer science, Artificial neural network, Inertial frame of reference, Pedestrian, Artificial intelligence, Engineering, Global Positioning System, Telecommunications, Physics, Computer security, Transport engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
72Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2023: 12, 2022: 12, 2021: 15Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2586574952 |
|---|---|
| doi | https://doi.org/10.1155/2017/6091261 |
| ids.doi | https://doi.org/10.1155/2017/6091261 |
| ids.mag | 2586574952 |
| ids.openalex | https://openalex.org/W2586574952 |
| fwci | 3.56775038 |
| type | article |
| title | Pedestrian Stride Length Estimation from IMU Measurements and ANN Based Algorithm |
| biblio.issue | |
| biblio.volume | 2017 |
| biblio.last_page | 10 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T12740 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Gait Recognition and Analysis |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C18007350 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8684725761413574 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7394815 |
| concepts[0].display_name | STRIDE |
| concepts[1].id | https://openalex.org/C79061980 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8080729246139526 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[1].display_name | Inertial measurement unit |
| concepts[2].id | https://openalex.org/C293773 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6315980553627014 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7608015 |
| concepts[2].display_name | Step detection |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6130539774894714 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C106165642 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5632240772247314 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q152255 |
| concepts[4].display_name | Dead reckoning |
| concepts[5].id | https://openalex.org/C158622935 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5166328549385071 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[5].display_name | Nonlinear system |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5073015093803406 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49700167775154114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C173386949 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48846831917762756 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192735 |
| concepts[8].display_name | Inertial frame of reference |
| concepts[9].id | https://openalex.org/C2777113093 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4634741246700287 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q221488 |
| concepts[9].display_name | Pedestrian |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2982356548309326 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.27902013063430786 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C60229501 |
| concepts[12].level | 2 |
| concepts[12].score | 0.16660642623901367 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[12].display_name | Global Positioning System |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10034218430519104 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C22212356 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[16].display_name | Transport engineering |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/stride |
| keywords[0].score | 0.8684725761413574 |
| keywords[0].display_name | STRIDE |
| keywords[1].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[1].score | 0.8080729246139526 |
| keywords[1].display_name | Inertial measurement unit |
| keywords[2].id | https://openalex.org/keywords/step-detection |
| keywords[2].score | 0.6315980553627014 |
| keywords[2].display_name | Step detection |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.6130539774894714 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/dead-reckoning |
| keywords[4].score | 0.5632240772247314 |
| keywords[4].display_name | Dead reckoning |
| keywords[5].id | https://openalex.org/keywords/nonlinear-system |
| keywords[5].score | 0.5166328549385071 |
| keywords[5].display_name | Nonlinear system |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5073015093803406 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.49700167775154114 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/inertial-frame-of-reference |
| keywords[8].score | 0.48846831917762756 |
| keywords[8].display_name | Inertial frame of reference |
| keywords[9].id | https://openalex.org/keywords/pedestrian |
| keywords[9].score | 0.4634741246700287 |
| keywords[9].display_name | Pedestrian |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2982356548309326 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.27902013063430786 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/global-positioning-system |
| keywords[12].score | 0.16660642623901367 |
| keywords[12].display_name | Global Positioning System |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.10034218430519104 |
| keywords[13].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1155/2017/6091261 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S96783963 |
| locations[0].source.issn | 1687-725X, 1687-7268 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1687-725X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://downloads.hindawi.com/journals/js/2017/6091261.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Sensors |
| locations[0].landing_page_url | https://doi.org/10.1155/2017/6091261 |
| locations[1].id | pmh:oai:doaj.org/article:a37f09c5c5764970aec113e91e52e188 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Sensors, Vol 2017 (2017) |
| locations[1].landing_page_url | https://doaj.org/article/a37f09c5c5764970aec113e91e52e188 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5016734342 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6497-3969 |
| authorships[0].author.display_name | Haifeng Xing |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haifeng Xing |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[1].author.id | https://openalex.org/A5100681642 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5447-2896 |
| authorships[1].author.display_name | Jinglong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[1].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[1].institutions[0].id | https://openalex.org/I99065089 |
| authorships[1].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tsinghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinglong Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[2].author.id | https://openalex.org/A5101715133 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4030-0716 |
| authorships[2].author.display_name | Bo Hou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[2].institutions[0].id | https://openalex.org/I99065089 |
| authorships[2].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tsinghua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bo Hou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[3].author.id | https://openalex.org/A5100724512 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9258-3914 |
| authorships[3].author.display_name | Yongjian Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yongjian Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[4].author.id | https://openalex.org/A5101521462 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9068-3973 |
| authorships[4].author.display_name | Meifeng Guo |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Meifeng Guo |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Engineering Research Center for Navigation Technology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://downloads.hindawi.com/journals/js/2017/6091261.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Pedestrian Stride Length Estimation from IMU Measurements and ANN Based Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2582136274, https://openalex.org/W3011156758, https://openalex.org/W4294113342, https://openalex.org/W2936887342, https://openalex.org/W4401591235, https://openalex.org/W2794169986, https://openalex.org/W4379057334, https://openalex.org/W2794631200, https://openalex.org/W2077409896, https://openalex.org/W2555436023 |
| cited_by_count | 72 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 12 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 12 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 15 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 8 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 12 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 4 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2017/6091261 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S96783963 |
| best_oa_location.source.issn | 1687-725X, 1687-7268 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1687-725X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://downloads.hindawi.com/journals/js/2017/6091261.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2017/6091261 |
| primary_location.id | doi:10.1155/2017/6091261 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S96783963 |
| primary_location.source.issn | 1687-725X, 1687-7268 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1687-725X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://downloads.hindawi.com/journals/js/2017/6091261.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Sensors |
| primary_location.landing_page_url | https://doi.org/10.1155/2017/6091261 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2229301416, https://openalex.org/W2129912474, https://openalex.org/W2044831755, https://openalex.org/W2120824934, https://openalex.org/W2120917188, https://openalex.org/W2132506916, https://openalex.org/W2114182580, https://openalex.org/W1979511389, https://openalex.org/W1956618308, https://openalex.org/W2412400097, https://openalex.org/W2153195033, https://openalex.org/W2107774107 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 41, 59, 66, 74 |
| abstract_inverted_index.It | 143 |
| abstract_inverted_index.be | 5, 146 |
| abstract_inverted_index.if | 136 |
| abstract_inverted_index.in | 85, 99, 134, 154 |
| abstract_inverted_index.is | 28, 104, 108, 141 |
| abstract_inverted_index.it | 80 |
| abstract_inverted_index.of | 23, 95, 112 |
| abstract_inverted_index.on | 48, 65 |
| abstract_inverted_index.or | 13 |
| abstract_inverted_index.to | 130 |
| abstract_inverted_index.2%, | 106 |
| abstract_inverted_index.The | 88 |
| abstract_inverted_index.and | 20, 37, 45, 51, 115 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.can | 4 |
| abstract_inverted_index.few | 42 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.net | 140 |
| abstract_inverted_index.not | 18, 128 |
| abstract_inverted_index.the | 21, 24, 86, 93, 96, 101, 113, 120, 124, 137 |
| abstract_inverted_index.two | 122 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.back | 67 |
| abstract_inverted_index.can, | 144 |
| abstract_inverted_index.cost | 53 |
| abstract_inverted_index.dead | 1 |
| abstract_inverted_index.does | 127 |
| abstract_inverted_index.high | 49, 52 |
| abstract_inverted_index.need | 129 |
| abstract_inverted_index.puts | 57 |
| abstract_inverted_index.rely | 47 |
| abstract_inverted_index.some | 46 |
| abstract_inverted_index.than | 110 |
| abstract_inverted_index.that | 92, 111, 148 |
| abstract_inverted_index.then | 81 |
| abstract_inverted_index.this | 149 |
| abstract_inverted_index.unit | 78 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.when | 11 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.(PDR) | 3 |
| abstract_inverted_index.based | 64 |
| abstract_inverted_index.error | 94 |
| abstract_inverted_index.other | 14 |
| abstract_inverted_index.paper | 56 |
| abstract_inverted_index.radio | 15 |
| abstract_inverted_index.shows | 151 |
| abstract_inverted_index.thus, | 145 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.(IMU); | 79 |
| abstract_inverted_index.latter | 121 |
| abstract_inverted_index.length | 26, 32, 61, 103 |
| abstract_inverted_index.linear | 36 |
| abstract_inverted_index.neural | 70, 139 |
| abstract_inverted_index.stride | 25, 31, 60, 102, 157 |
| abstract_inverted_index.Current | 30 |
| abstract_inverted_index.advance | 135 |
| abstract_inverted_index.factors | 84 |
| abstract_inverted_index.forward | 58 |
| abstract_inverted_index.length. | 158 |
| abstract_inverted_index.models, | 39, 123 |
| abstract_inverted_index.models. | 117 |
| abstract_inverted_index.network | 71 |
| abstract_inverted_index.results | 90 |
| abstract_inverted_index.signals | 16 |
| abstract_inverted_index.smaller | 109 |
| abstract_inverted_index.trained | 138 |
| abstract_inverted_index.various | 83 |
| abstract_inverted_index.Compared | 118 |
| abstract_inverted_index.accuracy | 22 |
| abstract_inverted_index.consider | 40 |
| abstract_inverted_index.factors, | 44 |
| abstract_inverted_index.indicate | 91 |
| abstract_inverted_index.inertial | 76 |
| abstract_inverted_index.position | 9 |
| abstract_inverted_index.proposed | 97, 125 |
| abstract_inverted_index.superior | 152 |
| abstract_inverted_index.variable | 43 |
| abstract_inverted_index.(BP-ANN), | 72 |
| abstract_inverted_index.algorithm | 63, 98, 126, 150 |
| abstract_inverted_index.concluded | 147 |
| abstract_inverted_index.determine | 131 |
| abstract_inverted_index.discusses | 82 |
| abstract_inverted_index.frequency | 114 |
| abstract_inverted_index.including | 35 |
| abstract_inverted_index.nonlinear | 38, 116 |
| abstract_inverted_index.precision | 50 |
| abstract_inverted_index.reckoning | 2 |
| abstract_inverted_index.satellite | 12 |
| abstract_inverted_index.Pedestrian | 0 |
| abstract_inverted_index.algorithm. | 87 |
| abstract_inverted_index.artificial | 69 |
| abstract_inverted_index.available, | 19 |
| abstract_inverted_index.continuous | 8 |
| abstract_inverted_index.effective. | 142 |
| abstract_inverted_index.equipment. | 54 |
| abstract_inverted_index.estimating | 100, 155 |
| abstract_inverted_index.estimation | 10, 33, 62 |
| abstract_inverted_index.important. | 29 |
| abstract_inverted_index.individual | 132 |
| abstract_inverted_index.parameters | 133 |
| abstract_inverted_index.pedestrian | 156 |
| abstract_inverted_index.algorithms, | 34 |
| abstract_inverted_index.measurement | 27, 77 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.propagation | 68 |
| abstract_inverted_index.experimental | 89 |
| abstract_inverted_index.approximately | 105 |
| abstract_inverted_index.consumer-grade | 75 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5101521462 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I99065089 |
| citation_normalized_percentile.value | 0.9397878 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |