Perceptual Artifacts Localization for Image Synthesis Tasks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.05590
Recent advancements in deep generative models have facilitated the creation of photo-realistic images across various tasks. However, these generated images often exhibit perceptual artifacts in specific regions, necessitating manual correction. In this study, we present a comprehensive empirical examination of Perceptual Artifacts Localization (PAL) spanning diverse image synthesis endeavors. We introduce a novel dataset comprising 10,168 generated images, each annotated with per-pixel perceptual artifact labels across ten synthesis tasks. A segmentation model, trained on our proposed dataset, effectively localizes artifacts across a range of tasks. Additionally, we illustrate its proficiency in adapting to previously unseen models using minimal training samples. We further propose an innovative zoom-in inpainting pipeline that seamlessly rectifies perceptual artifacts in the generated images. Through our experimental analyses, we elucidate several practical downstream applications, such as automated artifact rectification, non-referential image quality evaluation, and abnormal region detection in images. The dataset and code are released.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.05590
- https://arxiv.org/pdf/2310.05590
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387560208
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387560208Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.05590Digital Object Identifier
- Title
-
Perceptual Artifacts Localization for Image Synthesis TasksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-09Full publication date if available
- Authors
-
Lingzhi Zhang, Zhengjie Xu, Connelly Barnes, Yuqian Zhou, Qing Liu, He Zhang, Sohrab Amirghodsi, Zhe Lin, Eli Shechtman, Jianbo ShiList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.05590Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.05590Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.05590Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Pipeline (software), Artifact (error), Inpainting, Perception, Computer vision, Zoom, Segmentation, Code (set theory), Image (mathematics), Pattern recognition (psychology), Set (abstract data type), Neuroscience, Lens (geology), Programming language, Engineering, Petroleum engineering, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387560208 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.05590 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.05590 |
| ids.openalex | https://openalex.org/W4387560208 |
| fwci | |
| type | preprint |
| title | Perceptual Artifacts Localization for Image Synthesis Tasks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9918000102043152 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8121973276138306 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7778327465057373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C43521106 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6887826919555664 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[2].display_name | Pipeline (software) |
| concepts[3].id | https://openalex.org/C2779010991 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6807260513305664 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2720909 |
| concepts[3].display_name | Artifact (error) |
| concepts[4].id | https://openalex.org/C11727466 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6395630836486816 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[4].display_name | Inpainting |
| concepts[5].id | https://openalex.org/C26760741 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5996252298355103 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[5].display_name | Perception |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.57152259349823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C124913957 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5420973300933838 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1232548 |
| concepts[7].display_name | Zoom |
| concepts[8].id | https://openalex.org/C89600930 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4597940146923065 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[8].display_name | Segmentation |
| concepts[9].id | https://openalex.org/C2776760102 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42472490668296814 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[9].display_name | Code (set theory) |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.39383411407470703 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36543238162994385 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C177264268 |
| concepts[12].level | 2 |
| concepts[12].score | 0.07736706733703613 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[12].display_name | Set (abstract data type) |
| concepts[13].id | https://openalex.org/C169760540 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[13].display_name | Neuroscience |
| concepts[14].id | https://openalex.org/C15336307 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1766051 |
| concepts[14].display_name | Lens (geology) |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C78762247 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1273174 |
| concepts[17].display_name | Petroleum engineering |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8121973276138306 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7778327465057373 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pipeline |
| keywords[2].score | 0.6887826919555664 |
| keywords[2].display_name | Pipeline (software) |
| keywords[3].id | https://openalex.org/keywords/artifact |
| keywords[3].score | 0.6807260513305664 |
| keywords[3].display_name | Artifact (error) |
| keywords[4].id | https://openalex.org/keywords/inpainting |
| keywords[4].score | 0.6395630836486816 |
| keywords[4].display_name | Inpainting |
| keywords[5].id | https://openalex.org/keywords/perception |
| keywords[5].score | 0.5996252298355103 |
| keywords[5].display_name | Perception |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.57152259349823 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/zoom |
| keywords[7].score | 0.5420973300933838 |
| keywords[7].display_name | Zoom |
| keywords[8].id | https://openalex.org/keywords/segmentation |
| keywords[8].score | 0.4597940146923065 |
| keywords[8].display_name | Segmentation |
| keywords[9].id | https://openalex.org/keywords/code |
| keywords[9].score | 0.42472490668296814 |
| keywords[9].display_name | Code (set theory) |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.39383411407470703 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.36543238162994385 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/set |
| keywords[12].score | 0.07736706733703613 |
| keywords[12].display_name | Set (abstract data type) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.05590 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.05590 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.05590 |
| locations[1].id | doi:10.48550/arxiv.2310.05590 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.05590 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100683340 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8348-5618 |
| authorships[0].author.display_name | Lingzhi Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Lingzhi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100525424 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhengjie Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Zhengjie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083898813 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Connelly Barnes |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Barnes, Connelly |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101667454 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7100-113X |
| authorships[3].author.display_name | Yuqian Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Yuqian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102334908 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0879-7440 |
| authorships[4].author.display_name | Qing Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Qing |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100420133 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7036-6820 |
| authorships[5].author.display_name | He Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, He |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5042253371 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Sohrab Amirghodsi |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Amirghodsi, Sohrab |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101564904 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1154-9907 |
| authorships[7].author.display_name | Zhe Lin |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lin, Zhe |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5024777042 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6783-1795 |
| authorships[8].author.display_name | Eli Shechtman |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shechtman, Eli |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5081456949 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2637-1929 |
| authorships[9].author.display_name | Jianbo Shi |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Shi, Jianbo |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.05590 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Perceptual Artifacts Localization for Image Synthesis Tasks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2380775572, https://openalex.org/W2213520135, https://openalex.org/W2244018504, https://openalex.org/W4242046654, https://openalex.org/W3174923100, https://openalex.org/W3134074939, https://openalex.org/W2117562399, https://openalex.org/W4298074124, https://openalex.org/W3091947927, https://openalex.org/W4388446985 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.05590 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.05590 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.05590 |
| primary_location.id | pmh:oai:arXiv.org:2310.05590 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.05590 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.05590 |
| publication_date | 2023-10-09 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 69 |
| abstract_inverted_index.a | 35, 51, 81 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.We | 49, 100 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.as | 128 |
| abstract_inverted_index.in | 2, 24, 90, 113, 140 |
| abstract_inverted_index.of | 10, 39, 83 |
| abstract_inverted_index.on | 73 |
| abstract_inverted_index.to | 92 |
| abstract_inverted_index.we | 33, 86, 121 |
| abstract_inverted_index.The | 142 |
| abstract_inverted_index.and | 136, 144 |
| abstract_inverted_index.are | 146 |
| abstract_inverted_index.its | 88 |
| abstract_inverted_index.our | 74, 118 |
| abstract_inverted_index.ten | 66 |
| abstract_inverted_index.the | 8, 114 |
| abstract_inverted_index.code | 145 |
| abstract_inverted_index.deep | 3 |
| abstract_inverted_index.each | 58 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.such | 127 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.with | 60 |
| abstract_inverted_index.(PAL) | 43 |
| abstract_inverted_index.image | 46, 133 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.range | 82 |
| abstract_inverted_index.these | 17 |
| abstract_inverted_index.using | 96 |
| abstract_inverted_index.10,168 | 55 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.across | 13, 65, 80 |
| abstract_inverted_index.images | 12, 19 |
| abstract_inverted_index.labels | 64 |
| abstract_inverted_index.manual | 28 |
| abstract_inverted_index.model, | 71 |
| abstract_inverted_index.models | 5, 95 |
| abstract_inverted_index.region | 138 |
| abstract_inverted_index.study, | 32 |
| abstract_inverted_index.tasks. | 15, 68, 84 |
| abstract_inverted_index.unseen | 94 |
| abstract_inverted_index.Through | 117 |
| abstract_inverted_index.dataset | 53, 143 |
| abstract_inverted_index.diverse | 45 |
| abstract_inverted_index.exhibit | 21 |
| abstract_inverted_index.further | 101 |
| abstract_inverted_index.images, | 57 |
| abstract_inverted_index.images. | 116, 141 |
| abstract_inverted_index.minimal | 97 |
| abstract_inverted_index.present | 34 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.quality | 134 |
| abstract_inverted_index.several | 123 |
| abstract_inverted_index.trained | 72 |
| abstract_inverted_index.various | 14 |
| abstract_inverted_index.zoom-in | 105 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.abnormal | 137 |
| abstract_inverted_index.adapting | 91 |
| abstract_inverted_index.artifact | 63, 130 |
| abstract_inverted_index.creation | 9 |
| abstract_inverted_index.dataset, | 76 |
| abstract_inverted_index.pipeline | 107 |
| abstract_inverted_index.proposed | 75 |
| abstract_inverted_index.regions, | 26 |
| abstract_inverted_index.samples. | 99 |
| abstract_inverted_index.spanning | 44 |
| abstract_inverted_index.specific | 25 |
| abstract_inverted_index.training | 98 |
| abstract_inverted_index.Artifacts | 41 |
| abstract_inverted_index.analyses, | 120 |
| abstract_inverted_index.annotated | 59 |
| abstract_inverted_index.artifacts | 23, 79, 112 |
| abstract_inverted_index.automated | 129 |
| abstract_inverted_index.detection | 139 |
| abstract_inverted_index.elucidate | 122 |
| abstract_inverted_index.empirical | 37 |
| abstract_inverted_index.generated | 18, 56, 115 |
| abstract_inverted_index.introduce | 50 |
| abstract_inverted_index.localizes | 78 |
| abstract_inverted_index.per-pixel | 61 |
| abstract_inverted_index.practical | 124 |
| abstract_inverted_index.rectifies | 110 |
| abstract_inverted_index.released. | 147 |
| abstract_inverted_index.synthesis | 47, 67 |
| abstract_inverted_index.Perceptual | 40 |
| abstract_inverted_index.comprising | 54 |
| abstract_inverted_index.downstream | 125 |
| abstract_inverted_index.endeavors. | 48 |
| abstract_inverted_index.generative | 4 |
| abstract_inverted_index.illustrate | 87 |
| abstract_inverted_index.innovative | 104 |
| abstract_inverted_index.inpainting | 106 |
| abstract_inverted_index.perceptual | 22, 62, 111 |
| abstract_inverted_index.previously | 93 |
| abstract_inverted_index.seamlessly | 109 |
| abstract_inverted_index.correction. | 29 |
| abstract_inverted_index.effectively | 77 |
| abstract_inverted_index.evaluation, | 135 |
| abstract_inverted_index.examination | 38 |
| abstract_inverted_index.facilitated | 7 |
| abstract_inverted_index.proficiency | 89 |
| abstract_inverted_index.Localization | 42 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.experimental | 119 |
| abstract_inverted_index.segmentation | 70 |
| abstract_inverted_index.Additionally, | 85 |
| abstract_inverted_index.applications, | 126 |
| abstract_inverted_index.comprehensive | 36 |
| abstract_inverted_index.necessitating | 27 |
| abstract_inverted_index.rectification, | 131 |
| abstract_inverted_index.non-referential | 132 |
| abstract_inverted_index.photo-realistic | 11 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile |