Perceptual averaging of scientific data: Implications of ensemble representations for the perception of patterns in graphs Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1167/16.12.1081
One of the most prominent trends in recent visual cognition research has been the study of ensemble representations, as in the phenomenon of perceptual averaging: people are impressively accurate and efficient at extracting average properties of visual stimuli, such as the average size of an array of objects, or the average emotion of a collection of faces. Here we explored the nature and implications of perceptual averaging in the context of a particular sort of ubiquitous visual stimulus: graphs of numerical data. The most common way to graph numerical data involves presenting average values explicitly, as the heights of bars in bar graphs. But the use of bar graphs also leads to biased perception and reasoning, as observers implicitly behave as if data are more likely to be contained within the bars themselves, even when they depict averages (as in the so-called 'within-the-bar bias', perhaps due to object-based attention). Here we tested observers' ability to perceive and remember average values via perceptual averaging when they viewed entire distributions of values. Observers had to extract and report (via mouse clicks) the average values of two distributions, depicted either as bar graphs or as 'beeswarm plots' (a kind of one-dimensional scatterplot, in which each datapoint is depicted by a non-overlapping dot — with no explicit representation of the average value). Observers were surprisingly accurate at extracting average values from beeswarm plots. Indeed, observers were just as accurate at reporting averages from visible beeswarm plots as they were when simply recalling the heights of bars from bar graphs. Even reports of average values from beeswarms made from memory were highly accurate (though not as accurate as when the beeswarms were visible). These results collectively demonstrate that perceptual averaging operates efficiently when viewing scientific data, and could be exploited for information visualization. Meeting abstract presented at VSS 2016
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1167/16.12.1081
- OA Status
- gold
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2571405856
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2571405856Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1167/16.12.1081Digital Object Identifier
- Title
-
Perceptual averaging of scientific data: Implications of ensemble representations for the perception of patterns in graphsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-09-01Full publication date if available
- Authors
-
Stefan Uddenberg, George E. Newman, Brian J. SchollList of authors in order
- Landing page
-
https://doi.org/10.1167/16.12.1081Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1167/16.12.1081Direct OA link when available
- Concepts
-
Bar chart, Perception, Stimulus (psychology), Representation (politics), Computer science, Graph, Visual perception, Numerical cognition, Mathematics, Cognitive psychology, Pattern recognition (psychology), Artificial intelligence, Cognition, Psychology, Statistics, Theoretical computer science, Politics, Law, Neuroscience, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2018: 1, 2017: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2571405856 |
|---|---|
| doi | https://doi.org/10.1167/16.12.1081 |
| ids.doi | https://doi.org/10.1167/16.12.1081 |
| ids.mag | 2571405856 |
| ids.openalex | https://openalex.org/W2571405856 |
| fwci | 0.33436477 |
| type | article |
| title | Perceptual averaging of scientific data: Implications of ensemble representations for the perception of patterns in graphs |
| biblio.issue | 12 |
| biblio.volume | 16 |
| biblio.last_page | 1081 |
| biblio.first_page | 1081 |
| topics[0].id | https://openalex.org/T10799 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9950000047683716 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Data Visualization and Analytics |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C61122496 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7732143402099609 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1124595 |
| concepts[0].display_name | Bar chart |
| concepts[1].id | https://openalex.org/C26760741 |
| concepts[1].level | 2 |
| concepts[1].score | 0.738524317741394 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[1].display_name | Perception |
| concepts[2].id | https://openalex.org/C2779918689 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44746172428131104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3771842 |
| concepts[2].display_name | Stimulus (psychology) |
| concepts[3].id | https://openalex.org/C2776359362 |
| concepts[3].level | 3 |
| concepts[3].score | 0.44220080971717834 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[3].display_name | Representation (politics) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.44176942110061646 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43586188554763794 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C178253425 |
| concepts[6].level | 3 |
| concepts[6].score | 0.43011558055877686 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q162668 |
| concepts[6].display_name | Visual perception |
| concepts[7].id | https://openalex.org/C45768438 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4146645963191986 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q337432 |
| concepts[7].display_name | Numerical cognition |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.40471285581588745 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C180747234 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3788151741027832 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[9].display_name | Cognitive psychology |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35665497183799744 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34613215923309326 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C169900460 |
| concepts[12].level | 2 |
| concepts[12].score | 0.33559322357177734 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[12].display_name | Cognition |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3136979341506958 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3041365146636963 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C80444323 |
| concepts[15].level | 1 |
| concepts[15].score | 0.18614590167999268 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[15].display_name | Theoretical computer science |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C169760540 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[18].display_name | Neuroscience |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/bar-chart |
| keywords[0].score | 0.7732143402099609 |
| keywords[0].display_name | Bar chart |
| keywords[1].id | https://openalex.org/keywords/perception |
| keywords[1].score | 0.738524317741394 |
| keywords[1].display_name | Perception |
| keywords[2].id | https://openalex.org/keywords/stimulus |
| keywords[2].score | 0.44746172428131104 |
| keywords[2].display_name | Stimulus (psychology) |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.44220080971717834 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.44176942110061646 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.43586188554763794 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/visual-perception |
| keywords[6].score | 0.43011558055877686 |
| keywords[6].display_name | Visual perception |
| keywords[7].id | https://openalex.org/keywords/numerical-cognition |
| keywords[7].score | 0.4146645963191986 |
| keywords[7].display_name | Numerical cognition |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.40471285581588745 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[9].score | 0.3788151741027832 |
| keywords[9].display_name | Cognitive psychology |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.35665497183799744 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.34613215923309326 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/cognition |
| keywords[12].score | 0.33559322357177734 |
| keywords[12].display_name | Cognition |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.3136979341506958 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.3041365146636963 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[15].score | 0.18614590167999268 |
| keywords[15].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1167/16.12.1081 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S137468011 |
| locations[0].source.issn | 1534-7362 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-7362 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Vision |
| locations[0].source.host_organization | https://openalex.org/P4310315919 |
| locations[0].source.host_organization_name | Association for Research in Vision and Ophthalmology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315919 |
| locations[0].source.host_organization_lineage_names | Association for Research in Vision and Ophthalmology |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Vision |
| locations[0].landing_page_url | https://doi.org/10.1167/16.12.1081 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5032708228 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2689-3906 |
| authorships[0].author.display_name | Stefan Uddenberg |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Psychology, Yale University |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stefan Uddenberg |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Psychology, Yale University |
| authorships[1].author.id | https://openalex.org/A5049664275 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0498-6746 |
| authorships[1].author.display_name | George E. Newman |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Management, Yale University |
| authorships[1].institutions[0].id | https://openalex.org/I32971472 |
| authorships[1].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Yale University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | George Newman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Management, Yale University |
| authorships[2].author.id | https://openalex.org/A5052429455 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3610-0890 |
| authorships[2].author.display_name | Brian J. Scholl |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Psychology, Yale University |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Brian Scholl |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Psychology, Yale University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1167/16.12.1081 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Perceptual averaging of scientific data: Implications of ensemble representations for the perception of patterns in graphs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10799 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9950000047683716 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Data Visualization and Analytics |
| related_works | https://openalex.org/W2626294979, https://openalex.org/W1589047754, https://openalex.org/W3125467835, https://openalex.org/W116283028, https://openalex.org/W3122428593, https://openalex.org/W34990583, https://openalex.org/W2072256953, https://openalex.org/W2162395976, https://openalex.org/W3094394911, https://openalex.org/W2737361459 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2018 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2017 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1167/16.12.1081 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S137468011 |
| best_oa_location.source.issn | 1534-7362 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-7362 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Vision |
| best_oa_location.source.host_organization | https://openalex.org/P4310315919 |
| best_oa_location.source.host_organization_name | Association for Research in Vision and Ophthalmology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315919 |
| best_oa_location.source.host_organization_lineage_names | Association for Research in Vision and Ophthalmology |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Vision |
| best_oa_location.landing_page_url | https://doi.org/10.1167/16.12.1081 |
| primary_location.id | doi:10.1167/16.12.1081 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S137468011 |
| primary_location.source.issn | 1534-7362 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-7362 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Vision |
| primary_location.source.host_organization | https://openalex.org/P4310315919 |
| primary_location.source.host_organization_name | Association for Research in Vision and Ophthalmology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315919 |
| primary_location.source.host_organization_lineage_names | Association for Research in Vision and Ophthalmology |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Vision |
| primary_location.landing_page_url | https://doi.org/10.1167/16.12.1081 |
| publication_date | 2016-09-01 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 53, 71, 206 |
| abstract_inverted_index.(a | 194 |
| abstract_inverted_index.an | 44 |
| abstract_inverted_index.as | 18, 39, 95, 116, 120, 187, 191, 233, 242, 270, 272 |
| abstract_inverted_index.at | 31, 222, 235, 301 |
| abstract_inverted_index.be | 127, 293 |
| abstract_inverted_index.by | 205 |
| abstract_inverted_index.if | 121 |
| abstract_inverted_index.in | 6, 19, 67, 100, 139, 199 |
| abstract_inverted_index.is | 203 |
| abstract_inverted_index.no | 211 |
| abstract_inverted_index.of | 1, 15, 22, 35, 43, 46, 52, 55, 64, 70, 74, 79, 98, 106, 168, 182, 196, 214, 250, 257 |
| abstract_inverted_index.or | 48, 190 |
| abstract_inverted_index.to | 86, 111, 126, 146, 154, 172 |
| abstract_inverted_index.we | 58, 150 |
| abstract_inverted_index.(as | 138 |
| abstract_inverted_index.But | 103 |
| abstract_inverted_index.One | 0 |
| abstract_inverted_index.The | 82 |
| abstract_inverted_index.VSS | 302 |
| abstract_inverted_index.and | 29, 62, 114, 156, 174, 291 |
| abstract_inverted_index.are | 26, 123 |
| abstract_inverted_index.bar | 101, 107, 188, 253 |
| abstract_inverted_index.dot | 208 |
| abstract_inverted_index.due | 145 |
| abstract_inverted_index.for | 295 |
| abstract_inverted_index.had | 171 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.not | 269 |
| abstract_inverted_index.the | 2, 13, 20, 40, 49, 60, 68, 96, 104, 130, 140, 179, 215, 248, 274 |
| abstract_inverted_index.two | 183 |
| abstract_inverted_index.use | 105 |
| abstract_inverted_index.via | 160 |
| abstract_inverted_index.way | 85 |
| abstract_inverted_index.— | 209 |
| abstract_inverted_index.(via | 176 |
| abstract_inverted_index.2016 | 303 |
| abstract_inverted_index.Even | 255 |
| abstract_inverted_index.Here | 57, 149 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.bars | 99, 131, 251 |
| abstract_inverted_index.been | 12 |
| abstract_inverted_index.data | 89, 122 |
| abstract_inverted_index.each | 201 |
| abstract_inverted_index.even | 133 |
| abstract_inverted_index.from | 226, 238, 252, 260, 263 |
| abstract_inverted_index.just | 232 |
| abstract_inverted_index.kind | 195 |
| abstract_inverted_index.made | 262 |
| abstract_inverted_index.more | 124 |
| abstract_inverted_index.most | 3, 83 |
| abstract_inverted_index.size | 42 |
| abstract_inverted_index.sort | 73 |
| abstract_inverted_index.such | 38 |
| abstract_inverted_index.that | 282 |
| abstract_inverted_index.they | 135, 164, 243 |
| abstract_inverted_index.were | 219, 231, 244, 265, 276 |
| abstract_inverted_index.when | 134, 163, 245, 273, 287 |
| abstract_inverted_index.with | 210 |
| abstract_inverted_index.These | 278 |
| abstract_inverted_index.array | 45 |
| abstract_inverted_index.could | 292 |
| abstract_inverted_index.data, | 290 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.graph | 87 |
| abstract_inverted_index.leads | 110 |
| abstract_inverted_index.mouse | 177 |
| abstract_inverted_index.plots | 241 |
| abstract_inverted_index.study | 14 |
| abstract_inverted_index.which | 200 |
| abstract_inverted_index.behave | 119 |
| abstract_inverted_index.bias', | 143 |
| abstract_inverted_index.biased | 112 |
| abstract_inverted_index.common | 84 |
| abstract_inverted_index.depict | 136 |
| abstract_inverted_index.either | 186 |
| abstract_inverted_index.entire | 166 |
| abstract_inverted_index.faces. | 56 |
| abstract_inverted_index.graphs | 78, 108, 189 |
| abstract_inverted_index.highly | 266 |
| abstract_inverted_index.likely | 125 |
| abstract_inverted_index.memory | 264 |
| abstract_inverted_index.nature | 61 |
| abstract_inverted_index.people | 25 |
| abstract_inverted_index.plots' | 193 |
| abstract_inverted_index.plots. | 228 |
| abstract_inverted_index.recent | 7 |
| abstract_inverted_index.report | 175 |
| abstract_inverted_index.simply | 246 |
| abstract_inverted_index.tested | 151 |
| abstract_inverted_index.trends | 5 |
| abstract_inverted_index.values | 93, 159, 181, 225, 259 |
| abstract_inverted_index.viewed | 165 |
| abstract_inverted_index.visual | 8, 36, 76 |
| abstract_inverted_index.within | 129 |
| abstract_inverted_index.(though | 268 |
| abstract_inverted_index.Indeed, | 229 |
| abstract_inverted_index.Meeting | 298 |
| abstract_inverted_index.ability | 153 |
| abstract_inverted_index.average | 33, 41, 50, 92, 158, 180, 216, 224, 258 |
| abstract_inverted_index.clicks) | 178 |
| abstract_inverted_index.context | 69 |
| abstract_inverted_index.emotion | 51 |
| abstract_inverted_index.extract | 173 |
| abstract_inverted_index.graphs. | 102, 254 |
| abstract_inverted_index.heights | 97, 249 |
| abstract_inverted_index.perhaps | 144 |
| abstract_inverted_index.reports | 256 |
| abstract_inverted_index.results | 279 |
| abstract_inverted_index.value). | 217 |
| abstract_inverted_index.values. | 169 |
| abstract_inverted_index.viewing | 288 |
| abstract_inverted_index.visible | 239 |
| abstract_inverted_index.abstract | 299 |
| abstract_inverted_index.accurate | 28, 221, 234, 267, 271 |
| abstract_inverted_index.averages | 137, 237 |
| abstract_inverted_index.beeswarm | 227, 240 |
| abstract_inverted_index.depicted | 185, 204 |
| abstract_inverted_index.ensemble | 16 |
| abstract_inverted_index.explicit | 212 |
| abstract_inverted_index.explored | 59 |
| abstract_inverted_index.involves | 90 |
| abstract_inverted_index.objects, | 47 |
| abstract_inverted_index.operates | 285 |
| abstract_inverted_index.perceive | 155 |
| abstract_inverted_index.remember | 157 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.stimuli, | 37 |
| abstract_inverted_index.'beeswarm | 192 |
| abstract_inverted_index.Observers | 170, 218 |
| abstract_inverted_index.averaging | 66, 162, 284 |
| abstract_inverted_index.beeswarms | 261, 275 |
| abstract_inverted_index.cognition | 9 |
| abstract_inverted_index.contained | 128 |
| abstract_inverted_index.datapoint | 202 |
| abstract_inverted_index.efficient | 30 |
| abstract_inverted_index.exploited | 294 |
| abstract_inverted_index.numerical | 80, 88 |
| abstract_inverted_index.observers | 117, 230 |
| abstract_inverted_index.presented | 300 |
| abstract_inverted_index.prominent | 4 |
| abstract_inverted_index.recalling | 247 |
| abstract_inverted_index.reporting | 236 |
| abstract_inverted_index.so-called | 141 |
| abstract_inverted_index.stimulus: | 77 |
| abstract_inverted_index.visible). | 277 |
| abstract_inverted_index.averaging: | 24 |
| abstract_inverted_index.collection | 54 |
| abstract_inverted_index.extracting | 32, 223 |
| abstract_inverted_index.implicitly | 118 |
| abstract_inverted_index.observers' | 152 |
| abstract_inverted_index.particular | 72 |
| abstract_inverted_index.perception | 113 |
| abstract_inverted_index.perceptual | 23, 65, 161, 283 |
| abstract_inverted_index.phenomenon | 21 |
| abstract_inverted_index.presenting | 91 |
| abstract_inverted_index.properties | 34 |
| abstract_inverted_index.reasoning, | 115 |
| abstract_inverted_index.scientific | 289 |
| abstract_inverted_index.ubiquitous | 75 |
| abstract_inverted_index.attention). | 148 |
| abstract_inverted_index.demonstrate | 281 |
| abstract_inverted_index.efficiently | 286 |
| abstract_inverted_index.explicitly, | 94 |
| abstract_inverted_index.information | 296 |
| abstract_inverted_index.themselves, | 132 |
| abstract_inverted_index.collectively | 280 |
| abstract_inverted_index.implications | 63 |
| abstract_inverted_index.impressively | 27 |
| abstract_inverted_index.object-based | 147 |
| abstract_inverted_index.scatterplot, | 198 |
| abstract_inverted_index.surprisingly | 220 |
| abstract_inverted_index.distributions | 167 |
| abstract_inverted_index.distributions, | 184 |
| abstract_inverted_index.representation | 213 |
| abstract_inverted_index.visualization. | 297 |
| abstract_inverted_index.'within-the-bar | 142 |
| abstract_inverted_index.non-overlapping | 207 |
| abstract_inverted_index.one-dimensional | 197 |
| abstract_inverted_index.representations, | 17 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.70784287 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |