PERFORMANCE ANALYSIS OF MULTI-SWARM AI-BASED PSO, DE, AND K-MEANS FOR OPTIMIZATION TASKS Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.61586/ztphv
This study evaluates a multi-swarm AI framework that embeds K-Means within Particle Swarm Optimization (PSO) and Differential Evolution (DE) to overcome classic clustering weaknesses. Across benchmark datasets, DE delivers the best balance of accuracy and speed: Silhouette = 0.67, Davies-Bouldin = 0.69, MSE = 0.045, RMSE = 0.212, and quicker convergence than PSO. PSO improves on plain K-Means (Silhouette = 0.61 vs 0.52; DBI = 0.75 vs 0.86; MSE = 0.052 vs 0.078) but converges slower than DE because of velocity-update dependence. K-Means remains the fastest computationally yet lags markedly in clustering quality. Overall, multi-swarm optimization boosts clustering performance but increases computational demands and complicates hyper-parameter tuning. Future work should devise adaptive mechanisms to trim runtime and automate parameter selection to broaden real-world applicability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.61586/ztphv
- https://doi.org/10.61586/ztphv
- OA Status
- bronze
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411031095
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411031095Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.61586/ztphvDigital Object Identifier
- Title
-
PERFORMANCE ANALYSIS OF MULTI-SWARM AI-BASED PSO, DE, AND K-MEANS FOR OPTIMIZATION TASKSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Sitanath Biswas, Vipul Kumar, Ananth Ravi, Divya Kumari Tankala, Bhupchand Kumhar, Sayan Chakraborty, Santanu Kumar SahooList of authors in order
- Landing page
-
https://doi.org/10.61586/ztphvPublisher landing page
- PDF URL
-
https://doi.org/10.61586/ztphvDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.61586/ztphvDirect OA link when available
- Concepts
-
Particle swarm optimization, Computer science, Swarm behaviour, Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411031095 |
|---|---|
| doi | https://doi.org/10.61586/ztphv |
| ids.doi | https://doi.org/10.61586/ztphv |
| ids.openalex | https://openalex.org/W4411031095 |
| fwci | 0.0 |
| type | article |
| title | PERFORMANCE ANALYSIS OF MULTI-SWARM AI-BASED PSO, DE, AND K-MEANS FOR OPTIMIZATION TASKS |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10100 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9319999814033508 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C85617194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.663689136505127 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[0].display_name | Particle swarm optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5704285502433777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C181335050 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5575070381164551 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q14915018 |
| concepts[2].display_name | Swarm behaviour |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4742937386035919 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36350148916244507 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[0].score | 0.663689136505127 |
| keywords[0].display_name | Particle swarm optimization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5704285502433777 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/swarm-behaviour |
| keywords[2].score | 0.5575070381164551 |
| keywords[2].display_name | Swarm behaviour |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4742937386035919 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.36350148916244507 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.61586/ztphv |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S10886788 |
| locations[0].source.issn | 0007-5922 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0007-5922 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mitteilungen Klosterneuburg |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.61586/ztphv |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mitteilungen Klosterneuburg |
| locations[0].landing_page_url | https://doi.org/10.61586/ztphv |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5020871210 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-7853-1197 |
| authorships[0].author.display_name | Sitanath Biswas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sitanath Biswas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101831304 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-0751-4976 |
| authorships[1].author.display_name | Vipul Kumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | V Senthil Kumar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5045453006 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4583-5741 |
| authorships[2].author.display_name | Ananth Ravi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A Ravi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5092468798 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2842-4898 |
| authorships[3].author.display_name | Divya Kumari Tankala |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Divya Kumari Tankala |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5093790916 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Bhupchand Kumhar |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bhupchand Kumhar |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5103862149 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8638-4652 |
| authorships[5].author.display_name | Sayan Chakraborty |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sayan Chakraborty |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5076715812 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8324-3101 |
| authorships[6].author.display_name | Santanu Kumar Sahoo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Shubhashree Sahoo |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.61586/ztphv |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | PERFORMANCE ANALYSIS OF MULTI-SWARM AI-BASED PSO, DE, AND K-MEANS FOR OPTIMIZATION TASKS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10100 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9319999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Metaheuristic Optimization Algorithms Research |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W2133833450, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.61586/ztphv |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S10886788 |
| best_oa_location.source.issn | 0007-5922 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0007-5922 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mitteilungen Klosterneuburg |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.61586/ztphv |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mitteilungen Klosterneuburg |
| best_oa_location.landing_page_url | https://doi.org/10.61586/ztphv |
| primary_location.id | doi:10.61586/ztphv |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S10886788 |
| primary_location.source.issn | 0007-5922 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0007-5922 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mitteilungen Klosterneuburg |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.61586/ztphv |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mitteilungen Klosterneuburg |
| primary_location.landing_page_url | https://doi.org/10.61586/ztphv |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 37, 40, 43, 46, 59, 64, 69 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.AI | 5 |
| abstract_inverted_index.DE | 27, 77 |
| abstract_inverted_index.in | 90 |
| abstract_inverted_index.of | 32, 79 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.to | 19, 113, 120 |
| abstract_inverted_index.vs | 61, 66, 71 |
| abstract_inverted_index.DBI | 63 |
| abstract_inverted_index.MSE | 42, 68 |
| abstract_inverted_index.PSO | 53 |
| abstract_inverted_index.and | 15, 34, 48, 103, 116 |
| abstract_inverted_index.but | 73, 99 |
| abstract_inverted_index.the | 29, 84 |
| abstract_inverted_index.yet | 87 |
| abstract_inverted_index.(DE) | 18 |
| abstract_inverted_index.0.61 | 60 |
| abstract_inverted_index.0.75 | 65 |
| abstract_inverted_index.PSO. | 52 |
| abstract_inverted_index.RMSE | 45 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.best | 30 |
| abstract_inverted_index.lags | 88 |
| abstract_inverted_index.than | 51, 76 |
| abstract_inverted_index.that | 7 |
| abstract_inverted_index.trim | 114 |
| abstract_inverted_index.work | 108 |
| abstract_inverted_index.(PSO) | 14 |
| abstract_inverted_index.0.052 | 70 |
| abstract_inverted_index.0.52; | 62 |
| abstract_inverted_index.0.67, | 38 |
| abstract_inverted_index.0.69, | 41 |
| abstract_inverted_index.0.86; | 67 |
| abstract_inverted_index.Swarm | 12 |
| abstract_inverted_index.plain | 56 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.0.045, | 44 |
| abstract_inverted_index.0.078) | 72 |
| abstract_inverted_index.0.212, | 47 |
| abstract_inverted_index.Across | 24 |
| abstract_inverted_index.Future | 107 |
| abstract_inverted_index.boosts | 96 |
| abstract_inverted_index.devise | 110 |
| abstract_inverted_index.embeds | 8 |
| abstract_inverted_index.should | 109 |
| abstract_inverted_index.slower | 75 |
| abstract_inverted_index.speed: | 35 |
| abstract_inverted_index.within | 10 |
| abstract_inverted_index.K-Means | 9, 57, 82 |
| abstract_inverted_index.balance | 31 |
| abstract_inverted_index.because | 78 |
| abstract_inverted_index.broaden | 121 |
| abstract_inverted_index.classic | 21 |
| abstract_inverted_index.demands | 102 |
| abstract_inverted_index.fastest | 85 |
| abstract_inverted_index.quicker | 49 |
| abstract_inverted_index.remains | 83 |
| abstract_inverted_index.runtime | 115 |
| abstract_inverted_index.tuning. | 106 |
| abstract_inverted_index.Overall, | 93 |
| abstract_inverted_index.Particle | 11 |
| abstract_inverted_index.accuracy | 33 |
| abstract_inverted_index.adaptive | 111 |
| abstract_inverted_index.automate | 117 |
| abstract_inverted_index.delivers | 28 |
| abstract_inverted_index.improves | 54 |
| abstract_inverted_index.markedly | 89 |
| abstract_inverted_index.overcome | 20 |
| abstract_inverted_index.quality. | 92 |
| abstract_inverted_index.Evolution | 17 |
| abstract_inverted_index.benchmark | 25 |
| abstract_inverted_index.converges | 74 |
| abstract_inverted_index.datasets, | 26 |
| abstract_inverted_index.evaluates | 2 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.increases | 100 |
| abstract_inverted_index.parameter | 118 |
| abstract_inverted_index.selection | 119 |
| abstract_inverted_index.Silhouette | 36 |
| abstract_inverted_index.clustering | 22, 91, 97 |
| abstract_inverted_index.mechanisms | 112 |
| abstract_inverted_index.real-world | 122 |
| abstract_inverted_index.(Silhouette | 58 |
| abstract_inverted_index.complicates | 104 |
| abstract_inverted_index.convergence | 50 |
| abstract_inverted_index.dependence. | 81 |
| abstract_inverted_index.multi-swarm | 4, 94 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.weaknesses. | 23 |
| abstract_inverted_index.Differential | 16 |
| abstract_inverted_index.Optimization | 13 |
| abstract_inverted_index.optimization | 95 |
| abstract_inverted_index.computational | 101 |
| abstract_inverted_index.Davies-Bouldin | 39 |
| abstract_inverted_index.applicability. | 123 |
| abstract_inverted_index.computationally | 86 |
| abstract_inverted_index.hyper-parameter | 105 |
| abstract_inverted_index.velocity-update | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.08855266 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |