Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments: An Empirical Study. Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.9781/ijimai.2024.12.001
Federated learning, a distributive cooperative learning approach, allows clients to train the model locally using their data and share the trained model with a central server. When developing a federated learning environment, a deep/machine learning model needs to be chosen. The choice of the learning model can impact the model performance and the communication cost since federated learning requires the model exchange between clients and a central server in several rounds. In this work, we provide an empirical study to investigate the impact of using three different neural networks (CNN, VGG, and ResNet) models in image classification tasks using two different datasets (Cifar-10 and Cifar-100) in a federated learning environment. We investigate the impact of using these models on the global model performance and communication cost under different data distribution that are IID data and non-IID data distribution. The obtained results indicate that using CNN and ResNet models provide a faster convergence than VGG model. Additionally, these models require less communication costs. In contrast, the VGG model necessitates the sharing of numerous bits over several rounds to achieve higher accuracy under the IID data settings. However, its accuracy level is lower under non-IID data distributions than the other models. Furthermore, using a light model like CNN provides comparable results to the deeper neural network models with less communication cost, even though it may require more communication rounds to achieve the target accuracy in both datasets. CNN model requires fewer bits to be shared during communication than other models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.9781/ijimai.2024.12.001
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405584652
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405584652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.9781/ijimai.2024.12.001Digital Object Identifier
- Title
-
Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments: An Empirical Study.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-19Full publication date if available
- Authors
-
Bader Alhafi Alotaibi, Fakhri Alam Khan, Yousef Qawqzeh, Gwanggil Jeon, David CamachoList of authors in order
- Landing page
-
https://doi.org/10.9781/ijimai.2024.12.001Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.9781/ijimai.2024.12.001Direct OA link when available
- Concepts
-
Computer science, Artificial neural network, Empirical research, Artificial intelligence, Deep learning, Deep neural networks, Data science, Federated learning, Machine learning, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405584652 |
|---|---|
| doi | https://doi.org/10.9781/ijimai.2024.12.001 |
| ids.doi | https://doi.org/10.9781/ijimai.2024.12.001 |
| ids.openalex | https://openalex.org/W4405584652 |
| fwci | 0.63877855 |
| type | article |
| title | Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments: An Empirical Study. |
| biblio.issue | 4 |
| biblio.volume | 9 |
| biblio.last_page | 17 |
| biblio.first_page | 6 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9754999876022339 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9169520139694214 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5705204010009766 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C120936955 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5291488766670227 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2155640 |
| concepts[2].display_name | Empirical research |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5085963010787964 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48828649520874023 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C2984842247 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4610537588596344 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep neural networks |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44024693965911865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C2992525071 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4183367192745209 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[7].display_name | Federated learning |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4139057993888855 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C111472728 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[10].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.9169520139694214 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5705204010009766 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/empirical-research |
| keywords[2].score | 0.5291488766670227 |
| keywords[2].display_name | Empirical research |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5085963010787964 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.48828649520874023 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[5].score | 0.4610537588596344 |
| keywords[5].display_name | Deep neural networks |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.44024693965911865 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/federated-learning |
| keywords[7].score | 0.4183367192745209 |
| keywords[7].display_name | Federated learning |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4139057993888855 |
| keywords[8].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.9781/ijimai.2024.12.001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738898797 |
| locations[0].source.issn | 1989-1660 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1989-1660 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310321767 |
| locations[0].source.host_organization_name | International University of La Rioja |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321767 |
| locations[0].source.host_organization_lineage_names | International University of La Rioja |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.9781/ijimai.2024.12.001 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5013859093 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9633-4341 |
| authorships[0].author.display_name | Bader Alhafi Alotaibi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Basmah K. Alotaibi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061823072 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9130-1874 |
| authorships[1].author.display_name | Fakhri Alam Khan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fakhri Alam Khan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5022832812 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7774-062X |
| authorships[2].author.display_name | Yousef Qawqzeh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yousef Qawqzeh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049449184 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0651-4278 |
| authorships[3].author.display_name | Gwanggil Jeon |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gwanggil Jeon |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5025314362 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5051-3475 |
| authorships[4].author.display_name | David Camacho |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | David Camacho |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.9781/ijimai.2024.12.001 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments: An Empirical Study. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9754999876022339 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4298221930, https://openalex.org/W2777914285, https://openalex.org/W4377865163, https://openalex.org/W4366307084, https://openalex.org/W3193857078, https://openalex.org/W2888956734, https://openalex.org/W3000197790, https://openalex.org/W4315865067, https://openalex.org/W3208304128, https://openalex.org/W2979433843 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.9781/ijimai.2024.12.001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738898797 |
| best_oa_location.source.issn | 1989-1660 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1989-1660 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310321767 |
| best_oa_location.source.host_organization_name | International University of La Rioja |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321767 |
| best_oa_location.source.host_organization_lineage_names | International University of La Rioja |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.9781/ijimai.2024.12.001 |
| primary_location.id | doi:10.9781/ijimai.2024.12.001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738898797 |
| primary_location.source.issn | 1989-1660 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1989-1660 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310321767 |
| primary_location.source.host_organization_name | International University of La Rioja |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321767 |
| primary_location.source.host_organization_lineage_names | International University of La Rioja |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.9781/ijimai.2024.12.001 |
| publication_date | 2024-12-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 23, 28, 32, 65, 106, 149, 201 |
| abstract_inverted_index.In | 71, 162 |
| abstract_inverted_index.We | 110 |
| abstract_inverted_index.an | 76 |
| abstract_inverted_index.be | 38, 241 |
| abstract_inverted_index.in | 68, 94, 105, 232 |
| abstract_inverted_index.is | 189 |
| abstract_inverted_index.it | 221 |
| abstract_inverted_index.of | 42, 83, 114, 170 |
| abstract_inverted_index.on | 118 |
| abstract_inverted_index.to | 9, 37, 79, 176, 209, 227, 240 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.CNN | 144, 205, 235 |
| abstract_inverted_index.IID | 132, 182 |
| abstract_inverted_index.The | 40, 138 |
| abstract_inverted_index.VGG | 153, 165 |
| abstract_inverted_index.and | 17, 51, 64, 91, 103, 123, 134, 145 |
| abstract_inverted_index.are | 131 |
| abstract_inverted_index.can | 46 |
| abstract_inverted_index.its | 186 |
| abstract_inverted_index.may | 222 |
| abstract_inverted_index.the | 11, 19, 43, 48, 52, 59, 81, 112, 119, 164, 168, 181, 196, 210, 229 |
| abstract_inverted_index.two | 99 |
| abstract_inverted_index.VGG, | 90 |
| abstract_inverted_index.When | 26 |
| abstract_inverted_index.bits | 172, 239 |
| abstract_inverted_index.both | 233 |
| abstract_inverted_index.cost | 54, 125 |
| abstract_inverted_index.data | 16, 128, 133, 136, 183, 193 |
| abstract_inverted_index.even | 219 |
| abstract_inverted_index.less | 159, 216 |
| abstract_inverted_index.like | 204 |
| abstract_inverted_index.more | 224 |
| abstract_inverted_index.over | 173 |
| abstract_inverted_index.than | 152, 195, 245 |
| abstract_inverted_index.that | 130, 142 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.with | 22, 215 |
| abstract_inverted_index.(CNN, | 89 |
| abstract_inverted_index.cost, | 218 |
| abstract_inverted_index.fewer | 238 |
| abstract_inverted_index.image | 95 |
| abstract_inverted_index.level | 188 |
| abstract_inverted_index.light | 202 |
| abstract_inverted_index.lower | 190 |
| abstract_inverted_index.model | 12, 21, 35, 45, 49, 60, 121, 166, 203, 236 |
| abstract_inverted_index.needs | 36 |
| abstract_inverted_index.other | 197, 246 |
| abstract_inverted_index.share | 18 |
| abstract_inverted_index.since | 55 |
| abstract_inverted_index.study | 78 |
| abstract_inverted_index.tasks | 97 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.these | 116, 156 |
| abstract_inverted_index.three | 85 |
| abstract_inverted_index.train | 10 |
| abstract_inverted_index.under | 126, 180, 191 |
| abstract_inverted_index.using | 14, 84, 98, 115, 143, 200 |
| abstract_inverted_index.work, | 73 |
| abstract_inverted_index.ResNet | 146 |
| abstract_inverted_index.allows | 7 |
| abstract_inverted_index.choice | 41 |
| abstract_inverted_index.costs. | 161 |
| abstract_inverted_index.deeper | 211 |
| abstract_inverted_index.during | 243 |
| abstract_inverted_index.faster | 150 |
| abstract_inverted_index.global | 120 |
| abstract_inverted_index.higher | 178 |
| abstract_inverted_index.impact | 47, 82, 113 |
| abstract_inverted_index.model. | 154 |
| abstract_inverted_index.models | 93, 117, 147, 157, 214 |
| abstract_inverted_index.neural | 87, 212 |
| abstract_inverted_index.rounds | 175, 226 |
| abstract_inverted_index.server | 67 |
| abstract_inverted_index.shared | 242 |
| abstract_inverted_index.target | 230 |
| abstract_inverted_index.though | 220 |
| abstract_inverted_index.ResNet) | 92 |
| abstract_inverted_index.achieve | 177, 228 |
| abstract_inverted_index.between | 62 |
| abstract_inverted_index.central | 24, 66 |
| abstract_inverted_index.chosen. | 39 |
| abstract_inverted_index.clients | 8, 63 |
| abstract_inverted_index.locally | 13 |
| abstract_inverted_index.models. | 198, 247 |
| abstract_inverted_index.network | 213 |
| abstract_inverted_index.non-IID | 135, 192 |
| abstract_inverted_index.provide | 75, 148 |
| abstract_inverted_index.require | 158, 223 |
| abstract_inverted_index.results | 140, 208 |
| abstract_inverted_index.rounds. | 70 |
| abstract_inverted_index.server. | 25 |
| abstract_inverted_index.several | 69, 174 |
| abstract_inverted_index.sharing | 169 |
| abstract_inverted_index.trained | 20 |
| abstract_inverted_index.However, | 185 |
| abstract_inverted_index.accuracy | 179, 187, 231 |
| abstract_inverted_index.datasets | 101 |
| abstract_inverted_index.exchange | 61 |
| abstract_inverted_index.indicate | 141 |
| abstract_inverted_index.learning | 5, 30, 34, 44, 57, 108 |
| abstract_inverted_index.networks | 88 |
| abstract_inverted_index.numerous | 171 |
| abstract_inverted_index.obtained | 139 |
| abstract_inverted_index.provides | 206 |
| abstract_inverted_index.requires | 58, 237 |
| abstract_inverted_index.(Cifar-10 | 102 |
| abstract_inverted_index.Federated | 0 |
| abstract_inverted_index.approach, | 6 |
| abstract_inverted_index.contrast, | 163 |
| abstract_inverted_index.datasets. | 234 |
| abstract_inverted_index.different | 86, 100, 127 |
| abstract_inverted_index.empirical | 77 |
| abstract_inverted_index.federated | 29, 56, 107 |
| abstract_inverted_index.learning, | 1 |
| abstract_inverted_index.settings. | 184 |
| abstract_inverted_index.Cifar-100) | 104 |
| abstract_inverted_index.comparable | 207 |
| abstract_inverted_index.developing | 27 |
| abstract_inverted_index.convergence | 151 |
| abstract_inverted_index.cooperative | 4 |
| abstract_inverted_index.investigate | 80, 111 |
| abstract_inverted_index.performance | 50, 122 |
| abstract_inverted_index.Furthermore, | 199 |
| abstract_inverted_index.deep/machine | 33 |
| abstract_inverted_index.distribution | 129 |
| abstract_inverted_index.distributive | 3 |
| abstract_inverted_index.environment, | 31 |
| abstract_inverted_index.environment. | 109 |
| abstract_inverted_index.necessitates | 167 |
| abstract_inverted_index.Additionally, | 155 |
| abstract_inverted_index.communication | 53, 124, 160, 217, 225, 244 |
| abstract_inverted_index.distribution. | 137 |
| abstract_inverted_index.distributions | 194 |
| abstract_inverted_index.classification | 96 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.74270901 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |