Performance Assessment of Tailored Split-Window Coefficients for the Retrieval of Lake Surface Water Temperature from AVHRR Satellite Data Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.3390/rs9121334
Although lake surface water temperature (LSWT) is defined as an essential climate variable (ECV) within the global climate observing system (GCOS), current satellite-based retrieval techniques do not fulfill the GCOS accuracy requirements. The split-window (SW) retrieval method is well-established, and the split-window coefficients (SWC) are the key elements of its accuracy. Performances of SW depends on the degree of SWC customization with respect to its application, where accuracy increases when SWC is tailored for specific situations. In the literature, different SWC customization approaches have been investigated, however, no direct comparisons have been conducted among them. This paper presents the results of a sensitivity analysis to address this gap. We show that the performance of SWC is most sensitive to customizations for specific time-windows (Sensitivity Index SI of 0.85) or spatial extents (SI 0.27). Surprisingly, the study highlights that the use of separated SWC for daytime and night-time situations has limited impact (SI 0.10). The final validation with AVHRR satellite data showed that the subtle differences among different SWC customizations were not traceable to the final uncertainty of the LSWT product. Nevertheless, this study provides a basis to critically evaluate current assumptions regarding SWC generation by directly comparing the performance of multiple customization approaches for the first time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs9121334
- https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406
- OA Status
- gold
- Cited By
- 7
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2781354532
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2781354532Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs9121334Digital Object Identifier
- Title
-
Performance Assessment of Tailored Split-Window Coefficients for the Retrieval of Lake Surface Water Temperature from AVHRR Satellite DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-12-20Full publication date if available
- Authors
-
Gian-Duri Lieberherr, Michael Riffler, Stefan WunderleList of authors in order
- Landing page
-
https://doi.org/10.3390/rs9121334Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406Direct OA link when available
- Concepts
-
Environmental science, Satellite, Sensitivity (control systems), Remote sensing, Computer science, Geology, Aerospace engineering, Electronic engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1, 2020: 3, 2019: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2781354532 |
|---|---|
| doi | https://doi.org/10.3390/rs9121334 |
| ids.doi | https://doi.org/10.3390/rs9121334 |
| ids.mag | 2781354532 |
| ids.openalex | https://openalex.org/W2781354532 |
| fwci | 0.74600409 |
| type | article |
| title | Performance Assessment of Tailored Split-Window Coefficients for the Retrieval of Lake Surface Water Temperature from AVHRR Satellite Data |
| biblio.issue | 12 |
| biblio.volume | 9 |
| biblio.last_page | 1334 |
| biblio.first_page | 1334 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.991100013256073 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10032 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Marine and coastal ecosystems |
| topics[2].id | https://openalex.org/T10029 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Climate variability and models |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6699439287185669 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C19269812 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6237397193908691 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[1].display_name | Satellite |
| concepts[2].id | https://openalex.org/C21200559 |
| concepts[2].level | 2 |
| concepts[2].score | 0.42567890882492065 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[2].display_name | Sensitivity (control systems) |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.41000816226005554 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.34476009011268616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.07139426469802856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C146978453 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[6].display_name | Aerospace engineering |
| concepts[7].id | https://openalex.org/C24326235 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[7].display_name | Electronic engineering |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.6699439287185669 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/satellite |
| keywords[1].score | 0.6237397193908691 |
| keywords[1].display_name | Satellite |
| keywords[2].id | https://openalex.org/keywords/sensitivity |
| keywords[2].score | 0.42567890882492065 |
| keywords[2].display_name | Sensitivity (control systems) |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.41000816226005554 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.34476009011268616 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.07139426469802856 |
| keywords[5].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/rs9121334 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs9121334 |
| locations[1].id | pmh:oai:doaj.org/article:c2f24e1f2b0e4bfdb80571e25b7eda27 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 9, Iss 12, p 1334 (2017) |
| locations[1].landing_page_url | https://doaj.org/article/c2f24e1f2b0e4bfdb80571e25b7eda27 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/9/12/1334/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs9121334 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082950483 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2066-6868 |
| authorships[0].author.display_name | Gian-Duri Lieberherr |
| authorships[0].countries | CH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I118564535, https://openalex.org/I1299204452 |
| authorships[0].affiliations[0].raw_affiliation_string | Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, CH-3012 Bern, Switzerland |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I118564535 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland |
| authorships[0].institutions[0].id | https://openalex.org/I1299204452 |
| authorships[0].institutions[0].ror | https://ror.org/0329s8h62 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1299204452 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | Oeschger Centre for Climate Change Research |
| authorships[0].institutions[1].id | https://openalex.org/I118564535 |
| authorships[0].institutions[1].ror | https://ror.org/02k7v4d05 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I118564535 |
| authorships[0].institutions[1].country_code | CH |
| authorships[0].institutions[1].display_name | University of Bern |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gian Lieberherr |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland, Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, CH-3012 Bern, Switzerland |
| authorships[1].author.id | https://openalex.org/A5003640361 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Michael Riffler |
| authorships[1].countries | AT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210099562 |
| authorships[1].affiliations[0].raw_affiliation_string | GeoVille Information Systems and Data Processing GmbH, 6020 Innsbruck, Austria |
| authorships[1].institutions[0].id | https://openalex.org/I4210099562 |
| authorships[1].institutions[0].ror | https://ror.org/010p49b38 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210099562 |
| authorships[1].institutions[0].country_code | AT |
| authorships[1].institutions[0].display_name | GeoVille (Austria) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael Riffler |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | GeoVille Information Systems and Data Processing GmbH, 6020 Innsbruck, Austria |
| authorships[2].author.id | https://openalex.org/A5013715486 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Stefan Wunderle |
| authorships[2].countries | CH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I118564535, https://openalex.org/I1299204452 |
| authorships[2].affiliations[0].raw_affiliation_string | Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, CH-3012 Bern, Switzerland |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I118564535 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland |
| authorships[2].institutions[0].id | https://openalex.org/I1299204452 |
| authorships[2].institutions[0].ror | https://ror.org/0329s8h62 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1299204452 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | Oeschger Centre for Climate Change Research |
| authorships[2].institutions[1].id | https://openalex.org/I118564535 |
| authorships[2].institutions[1].ror | https://ror.org/02k7v4d05 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I118564535 |
| authorships[2].institutions[1].country_code | CH |
| authorships[2].institutions[1].display_name | University of Bern |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Stefan Wunderle |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland, Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, CH-3012 Bern, Switzerland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance Assessment of Tailored Split-Window Coefficients for the Retrieval of Lake Surface Water Temperature from AVHRR Satellite Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.991100013256073 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2013329914, https://openalex.org/W2392383081, https://openalex.org/W1618102658, https://openalex.org/W2373986278, https://openalex.org/W4205376403 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs9121334 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs9121334 |
| primary_location.id | doi:10.3390/rs9121334 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/9/12/1334/pdf?version=1513757406 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs9121334 |
| publication_date | 2017-12-20 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W70730126, https://openalex.org/W6791979508, https://openalex.org/W2161829879, https://openalex.org/W2202665948, https://openalex.org/W2555236075, https://openalex.org/W2094378139, https://openalex.org/W1647380342, https://openalex.org/W6734342899, https://openalex.org/W1483303053, https://openalex.org/W2468866439, https://openalex.org/W4237403253, https://openalex.org/W2173270467, https://openalex.org/W2087219264, https://openalex.org/W1978648105, https://openalex.org/W6655320490, https://openalex.org/W2145554228, https://openalex.org/W2114815266, https://openalex.org/W2105118753, https://openalex.org/W2316156031, https://openalex.org/W2481688151, https://openalex.org/W2028899047, https://openalex.org/W2136154846, https://openalex.org/W2001492078, https://openalex.org/W2161824355, https://openalex.org/W6652256359, https://openalex.org/W1967729191, https://openalex.org/W2121745948, https://openalex.org/W2465089691, https://openalex.org/W1968936982, https://openalex.org/W2046527951, https://openalex.org/W1991359408, https://openalex.org/W6667825805, https://openalex.org/W6644896102, https://openalex.org/W2275675996, https://openalex.org/W2148357137, https://openalex.org/W3139159637, https://openalex.org/W1979044636, https://openalex.org/W3023383796, https://openalex.org/W2020923031, https://openalex.org/W2007798682, https://openalex.org/W2993746540 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 101, 184 |
| abstract_inverted_index.In | 76 |
| abstract_inverted_index.SI | 125 |
| abstract_inverted_index.SW | 53 |
| abstract_inverted_index.We | 108 |
| abstract_inverted_index.an | 9 |
| abstract_inverted_index.as | 8 |
| abstract_inverted_index.by | 194 |
| abstract_inverted_index.do | 25 |
| abstract_inverted_index.is | 6, 37, 71, 115 |
| abstract_inverted_index.no | 87 |
| abstract_inverted_index.of | 48, 52, 58, 100, 113, 126, 140, 176, 199 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.or | 128 |
| abstract_inverted_index.to | 63, 104, 118, 172, 186 |
| abstract_inverted_index.(SI | 131, 151 |
| abstract_inverted_index.SWC | 59, 70, 80, 114, 142, 167, 192 |
| abstract_inverted_index.The | 32, 153 |
| abstract_inverted_index.and | 39, 145 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.for | 73, 120, 143, 203 |
| abstract_inverted_index.has | 148 |
| abstract_inverted_index.its | 49, 64 |
| abstract_inverted_index.key | 46 |
| abstract_inverted_index.not | 26, 170 |
| abstract_inverted_index.the | 15, 28, 40, 45, 56, 77, 98, 111, 134, 138, 162, 173, 177, 197, 204 |
| abstract_inverted_index.use | 139 |
| abstract_inverted_index.(SW) | 34 |
| abstract_inverted_index.GCOS | 29 |
| abstract_inverted_index.LSWT | 178 |
| abstract_inverted_index.This | 95 |
| abstract_inverted_index.been | 84, 91 |
| abstract_inverted_index.data | 159 |
| abstract_inverted_index.gap. | 107 |
| abstract_inverted_index.have | 83, 90 |
| abstract_inverted_index.lake | 1 |
| abstract_inverted_index.most | 116 |
| abstract_inverted_index.show | 109 |
| abstract_inverted_index.that | 110, 137, 161 |
| abstract_inverted_index.this | 106, 181 |
| abstract_inverted_index.were | 169 |
| abstract_inverted_index.when | 69 |
| abstract_inverted_index.with | 61, 156 |
| abstract_inverted_index.(ECV) | 13 |
| abstract_inverted_index.(SWC) | 43 |
| abstract_inverted_index.0.85) | 127 |
| abstract_inverted_index.AVHRR | 157 |
| abstract_inverted_index.Index | 124 |
| abstract_inverted_index.among | 93, 165 |
| abstract_inverted_index.basis | 185 |
| abstract_inverted_index.final | 154, 174 |
| abstract_inverted_index.first | 205 |
| abstract_inverted_index.paper | 96 |
| abstract_inverted_index.study | 135, 182 |
| abstract_inverted_index.them. | 94 |
| abstract_inverted_index.time. | 206 |
| abstract_inverted_index.water | 3 |
| abstract_inverted_index.where | 66 |
| abstract_inverted_index.(LSWT) | 5 |
| abstract_inverted_index.0.10). | 152 |
| abstract_inverted_index.0.27). | 132 |
| abstract_inverted_index.degree | 57 |
| abstract_inverted_index.direct | 88 |
| abstract_inverted_index.global | 16 |
| abstract_inverted_index.impact | 150 |
| abstract_inverted_index.method | 36 |
| abstract_inverted_index.showed | 160 |
| abstract_inverted_index.subtle | 163 |
| abstract_inverted_index.system | 19 |
| abstract_inverted_index.within | 14 |
| abstract_inverted_index.(GCOS), | 20 |
| abstract_inverted_index.address | 105 |
| abstract_inverted_index.climate | 11, 17 |
| abstract_inverted_index.current | 21, 189 |
| abstract_inverted_index.daytime | 144 |
| abstract_inverted_index.defined | 7 |
| abstract_inverted_index.depends | 54 |
| abstract_inverted_index.extents | 130 |
| abstract_inverted_index.fulfill | 27 |
| abstract_inverted_index.limited | 149 |
| abstract_inverted_index.respect | 62 |
| abstract_inverted_index.results | 99 |
| abstract_inverted_index.spatial | 129 |
| abstract_inverted_index.surface | 2 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.accuracy | 30, 67 |
| abstract_inverted_index.analysis | 103 |
| abstract_inverted_index.directly | 195 |
| abstract_inverted_index.elements | 47 |
| abstract_inverted_index.evaluate | 188 |
| abstract_inverted_index.however, | 86 |
| abstract_inverted_index.multiple | 200 |
| abstract_inverted_index.presents | 97 |
| abstract_inverted_index.product. | 179 |
| abstract_inverted_index.provides | 183 |
| abstract_inverted_index.specific | 74, 121 |
| abstract_inverted_index.tailored | 72 |
| abstract_inverted_index.variable | 12 |
| abstract_inverted_index.accuracy. | 50 |
| abstract_inverted_index.comparing | 196 |
| abstract_inverted_index.conducted | 92 |
| abstract_inverted_index.different | 79, 166 |
| abstract_inverted_index.essential | 10 |
| abstract_inverted_index.increases | 68 |
| abstract_inverted_index.observing | 18 |
| abstract_inverted_index.regarding | 191 |
| abstract_inverted_index.retrieval | 23, 35 |
| abstract_inverted_index.satellite | 158 |
| abstract_inverted_index.sensitive | 117 |
| abstract_inverted_index.separated | 141 |
| abstract_inverted_index.traceable | 171 |
| abstract_inverted_index.approaches | 82, 202 |
| abstract_inverted_index.critically | 187 |
| abstract_inverted_index.generation | 193 |
| abstract_inverted_index.highlights | 136 |
| abstract_inverted_index.night-time | 146 |
| abstract_inverted_index.situations | 147 |
| abstract_inverted_index.techniques | 24 |
| abstract_inverted_index.validation | 155 |
| abstract_inverted_index.assumptions | 190 |
| abstract_inverted_index.comparisons | 89 |
| abstract_inverted_index.differences | 164 |
| abstract_inverted_index.literature, | 78 |
| abstract_inverted_index.performance | 112, 198 |
| abstract_inverted_index.sensitivity | 102 |
| abstract_inverted_index.situations. | 75 |
| abstract_inverted_index.temperature | 4 |
| abstract_inverted_index.uncertainty | 175 |
| abstract_inverted_index.(Sensitivity | 123 |
| abstract_inverted_index.Performances | 51 |
| abstract_inverted_index.application, | 65 |
| abstract_inverted_index.coefficients | 42 |
| abstract_inverted_index.split-window | 33, 41 |
| abstract_inverted_index.time-windows | 122 |
| abstract_inverted_index.Nevertheless, | 180 |
| abstract_inverted_index.Surprisingly, | 133 |
| abstract_inverted_index.customization | 60, 81, 201 |
| abstract_inverted_index.investigated, | 85 |
| abstract_inverted_index.requirements. | 31 |
| abstract_inverted_index.customizations | 119, 168 |
| abstract_inverted_index.satellite-based | 22 |
| abstract_inverted_index.well-established, | 38 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5082950483 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I118564535, https://openalex.org/I1299204452 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.7133548 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |