PERFORMANCE COMPARISON OF KNN AND LINEAR REGRESSION BASED MACHINE LEARNING APPROACHES IN THE DESIGN OF AN EM-AGEING AWARE SCHEDULER FOR IMPROVING THE LIFETIME OF MULTI-CORE PROCESSORS Article Swipe
The increasing computing requirements in modern embedded systems demand high performance processing cores with highly down-scaled devices. System reliability due to ageing is a major concern in such processing cores. Run-time adaptations with ageing-aware schedulers are getting more attention to increase the lifetime reliability of the processing cores. Accurate and efficient thermal estimation of processing cores based on the characteristics of workloads is important to implement run-time adaptation schemes. In this work we have developed K-Nearest Neighbor (KNN) and Linear Regression (LR) machine learning models for the estimation of thermal profiles of the major power consuming logical units of a multi-core processor. Prediction performance of KNN and LR machine learning models in the design of an Electron Migration (EM)-ageing aware scheduler for improving the lifetime of multi-core processors is evaluated. The ageing-aware scheduler takes inputs from the trained models for the estimation of ageing effect and perform scheduling based on performance and reliability requirement. Experimental results show that predictive performance is better for KNN model compared to the LR model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21917/ijme.2022.0212
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409169497
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409169497Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21917/ijme.2022.0212Digital Object Identifier
- Title
-
PERFORMANCE COMPARISON OF KNN AND LINEAR REGRESSION BASED MACHINE LEARNING APPROACHES IN THE DESIGN OF AN EM-AGEING AWARE SCHEDULER FOR IMPROVING THE LIFETIME OF MULTI-CORE PROCESSORSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
J. P., M. G. MiniList of authors in order
- Landing page
-
https://doi.org/10.21917/ijme.2022.0212Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21917/ijme.2022.0212Direct OA link when available
- Concepts
-
Computer science, Linear regression, Core (optical fiber), Regression, Artificial intelligence, Machine learning, Ageing, Statistics, Mathematics, Medicine, Telecommunications, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409169497 |
|---|---|
| doi | https://doi.org/10.21917/ijme.2022.0212 |
| ids.doi | https://doi.org/10.21917/ijme.2022.0212 |
| ids.openalex | https://openalex.org/W4409169497 |
| fwci | 0.0 |
| type | article |
| title | PERFORMANCE COMPARISON OF KNN AND LINEAR REGRESSION BASED MACHINE LEARNING APPROACHES IN THE DESIGN OF AN EM-AGEING AWARE SCHEDULER FOR IMPROVING THE LIFETIME OF MULTI-CORE PROCESSORS |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 1240 |
| biblio.first_page | 1234 |
| topics[0].id | https://openalex.org/T10054 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9390000104904175 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1708 |
| topics[0].subfield.display_name | Hardware and Architecture |
| topics[0].display_name | Parallel Computing and Optimization Techniques |
| topics[1].id | https://openalex.org/T10551 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9207000136375427 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Scheduling and Optimization Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6451183557510376 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6084070801734924 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C2164484 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6076717972755432 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5170150 |
| concepts[2].display_name | Core (optical fiber) |
| concepts[3].id | https://openalex.org/C83546350 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5310065746307373 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[3].display_name | Regression |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5164554119110107 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4985363483428955 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C500499127 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4115385413169861 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q332154 |
| concepts[6].display_name | Ageing |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16605734825134277 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1168857216835022 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07781729102134705 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.060709148645401 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6451183557510376 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.6084070801734924 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/core |
| keywords[2].score | 0.6076717972755432 |
| keywords[2].display_name | Core (optical fiber) |
| keywords[3].id | https://openalex.org/keywords/regression |
| keywords[3].score | 0.5310065746307373 |
| keywords[3].display_name | Regression |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5164554119110107 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4985363483428955 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/ageing |
| keywords[6].score | 0.4115385413169861 |
| keywords[6].display_name | Ageing |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.16605734825134277 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.1168857216835022 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.07781729102134705 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.060709148645401 |
| keywords[10].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.21917/ijme.2022.0212 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210227041 |
| locations[0].source.issn | 2395-1672, 2395-1680 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2395-1672 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ICTACT Journal on Microelectronics |
| locations[0].source.host_organization | https://openalex.org/P4310318692 |
| locations[0].source.host_organization_name | ICT Academy |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318692 |
| locations[0].source.host_organization_lineage_names | ICT Academy |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICTACT Journal on Microelectronics |
| locations[0].landing_page_url | https://doi.org/10.21917/ijme.2022.0212 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5104386824 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J. P. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jagadeesh Kumar P |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012142791 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M. G. Mini |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Mini M G |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21917/ijme.2022.0212 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-04-05T00:00:00 |
| display_name | PERFORMANCE COMPARISON OF KNN AND LINEAR REGRESSION BASED MACHINE LEARNING APPROACHES IN THE DESIGN OF AN EM-AGEING AWARE SCHEDULER FOR IMPROVING THE LIFETIME OF MULTI-CORE PROCESSORS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10054 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9390000104904175 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1708 |
| primary_topic.subfield.display_name | Hardware and Architecture |
| primary_topic.display_name | Parallel Computing and Optimization Techniques |
| related_works | https://openalex.org/W2012906904, https://openalex.org/W2079106159, https://openalex.org/W2136134918, https://openalex.org/W2518476915, https://openalex.org/W2392044770, https://openalex.org/W31220157, https://openalex.org/W2288557197, https://openalex.org/W4233024177, https://openalex.org/W2101914902, https://openalex.org/W3174613421 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21917/ijme.2022.0212 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210227041 |
| best_oa_location.source.issn | 2395-1672, 2395-1680 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2395-1672 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ICTACT Journal on Microelectronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310318692 |
| best_oa_location.source.host_organization_name | ICT Academy |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318692 |
| best_oa_location.source.host_organization_lineage_names | ICT Academy |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ICTACT Journal on Microelectronics |
| best_oa_location.landing_page_url | https://doi.org/10.21917/ijme.2022.0212 |
| primary_location.id | doi:10.21917/ijme.2022.0212 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210227041 |
| primary_location.source.issn | 2395-1672, 2395-1680 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2395-1672 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ICTACT Journal on Microelectronics |
| primary_location.source.host_organization | https://openalex.org/P4310318692 |
| primary_location.source.host_organization_name | ICT Academy |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318692 |
| primary_location.source.host_organization_lineage_names | ICT Academy |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICTACT Journal on Microelectronics |
| primary_location.landing_page_url | https://doi.org/10.21917/ijme.2022.0212 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 99 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.LR | 107, 168 |
| abstract_inverted_index.an | 115 |
| abstract_inverted_index.in | 4, 26, 111 |
| abstract_inverted_index.is | 22, 62, 128, 160 |
| abstract_inverted_index.of | 44, 53, 60, 88, 91, 98, 104, 114, 125, 142 |
| abstract_inverted_index.on | 57, 149 |
| abstract_inverted_index.to | 20, 39, 64, 166 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.KNN | 105, 163 |
| abstract_inverted_index.The | 0, 130 |
| abstract_inverted_index.and | 49, 78, 106, 145, 151 |
| abstract_inverted_index.are | 35 |
| abstract_inverted_index.due | 19 |
| abstract_inverted_index.for | 85, 121, 139, 162 |
| abstract_inverted_index.the | 41, 45, 58, 86, 92, 112, 123, 136, 140, 167 |
| abstract_inverted_index.(LR) | 81 |
| abstract_inverted_index.from | 135 |
| abstract_inverted_index.have | 73 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.more | 37 |
| abstract_inverted_index.show | 156 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.that | 157 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.with | 13, 32 |
| abstract_inverted_index.work | 71 |
| abstract_inverted_index.(KNN) | 77 |
| abstract_inverted_index.aware | 119 |
| abstract_inverted_index.based | 56, 148 |
| abstract_inverted_index.cores | 12, 55 |
| abstract_inverted_index.major | 24, 93 |
| abstract_inverted_index.model | 164 |
| abstract_inverted_index.power | 94 |
| abstract_inverted_index.takes | 133 |
| abstract_inverted_index.units | 97 |
| abstract_inverted_index.Linear | 79 |
| abstract_inverted_index.System | 17 |
| abstract_inverted_index.ageing | 21, 143 |
| abstract_inverted_index.better | 161 |
| abstract_inverted_index.cores. | 29, 47 |
| abstract_inverted_index.demand | 8 |
| abstract_inverted_index.design | 113 |
| abstract_inverted_index.effect | 144 |
| abstract_inverted_index.highly | 14 |
| abstract_inverted_index.inputs | 134 |
| abstract_inverted_index.model. | 169 |
| abstract_inverted_index.models | 84, 110, 138 |
| abstract_inverted_index.modern | 5 |
| abstract_inverted_index.concern | 25 |
| abstract_inverted_index.getting | 36 |
| abstract_inverted_index.logical | 96 |
| abstract_inverted_index.machine | 82, 108 |
| abstract_inverted_index.perform | 146 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.systems | 7 |
| abstract_inverted_index.thermal | 51, 89 |
| abstract_inverted_index.trained | 137 |
| abstract_inverted_index.Accurate | 48 |
| abstract_inverted_index.Electron | 116 |
| abstract_inverted_index.Neighbor | 76 |
| abstract_inverted_index.Run-time | 30 |
| abstract_inverted_index.compared | 165 |
| abstract_inverted_index.devices. | 16 |
| abstract_inverted_index.embedded | 6 |
| abstract_inverted_index.increase | 40 |
| abstract_inverted_index.learning | 83, 109 |
| abstract_inverted_index.lifetime | 42, 124 |
| abstract_inverted_index.profiles | 90 |
| abstract_inverted_index.run-time | 66 |
| abstract_inverted_index.schemes. | 68 |
| abstract_inverted_index.K-Nearest | 75 |
| abstract_inverted_index.Migration | 117 |
| abstract_inverted_index.attention | 38 |
| abstract_inverted_index.computing | 2 |
| abstract_inverted_index.consuming | 95 |
| abstract_inverted_index.developed | 74 |
| abstract_inverted_index.efficient | 50 |
| abstract_inverted_index.implement | 65 |
| abstract_inverted_index.important | 63 |
| abstract_inverted_index.improving | 122 |
| abstract_inverted_index.scheduler | 120, 132 |
| abstract_inverted_index.workloads | 61 |
| abstract_inverted_index.Prediction | 102 |
| abstract_inverted_index.Regression | 80 |
| abstract_inverted_index.adaptation | 67 |
| abstract_inverted_index.estimation | 52, 87, 141 |
| abstract_inverted_index.evaluated. | 129 |
| abstract_inverted_index.increasing | 1 |
| abstract_inverted_index.multi-core | 100, 126 |
| abstract_inverted_index.predictive | 158 |
| abstract_inverted_index.processing | 11, 28, 46, 54 |
| abstract_inverted_index.processor. | 101 |
| abstract_inverted_index.processors | 127 |
| abstract_inverted_index.schedulers | 34 |
| abstract_inverted_index.scheduling | 147 |
| abstract_inverted_index.(EM)-ageing | 118 |
| abstract_inverted_index.adaptations | 31 |
| abstract_inverted_index.down-scaled | 15 |
| abstract_inverted_index.performance | 10, 103, 150, 159 |
| abstract_inverted_index.reliability | 18, 43, 152 |
| abstract_inverted_index.Experimental | 154 |
| abstract_inverted_index.ageing-aware | 33, 131 |
| abstract_inverted_index.requirement. | 153 |
| abstract_inverted_index.requirements | 3 |
| abstract_inverted_index.characteristics | 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.23227207 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |