Performance evaluation of backscattering coefficients and polarimetric decomposition parameters for marsh vegetation mapping using multi-sensor and multi-frequency SAR images Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecolind.2023.111246
Wetland vegetation is the basis for wetland ecosystems to regulate climate change, carbon sequestration and maintain biodiversity. Therefore, high-precision mapping and dynamic monitoring of wetland vegetation are essential for the effective management, restoration and sustainable development of wetland ecosystems. This study addressed to explore classification performance of backscattering coefficients and polarimetric decomposition parameters of multi-frequency SAR images, including single-polarimetric X-band TerraSAR (TS), full-polarimetric C-band Radarsat-2 (RS) and L-band ALOS PALSAR-2 (PS) for marsh vegetation mapping in Honghe National Nature Reserve, Northeast China. We proposed two transfer-learning strategies, and examined the feasibility of transfer-learning vegetation classifications between optical and SAR sensors, different frequencies SAR (X-, C- and L-band) and its derivative images, respectively. This paper further compared transfer-learning classification performance of marsh vegetation from polarimetric decomposition parameter images to backscattering coefficient images under the same SAR sensors. The results indicated that: (1) The three SAR images performed good classification ability in identifying marsh vegetation with the overall accuracies (OA) ranging from 0.74 to 0.88. For the same frequency SAR images, polarimetric decomposition parameters outperformed backscattering coefficients with an OA improvement ranging from 0.24 % to 2.41 %; (2) The longer wavelength SAR images produced better classification results, and L-band PS images realized the highest classification accuracy (OA = 0.871); (3) Full-polarimetric SAR images obtained the better transfer-learning classifications (OA > 0.8), and the transfer-learning classification ability of the same frequency SAR images outperformed the different frequencies; (4) The transfer learning classification results between SAR sensors outperformed that of between optical and SAR images. The results of this study provide a scientific basis for wetland change monitoring conservation and sustainable development.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecolind.2023.111246
- OA Status
- gold
- Cited By
- 17
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388839464
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388839464Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecolind.2023.111246Digital Object Identifier
- Title
-
Performance evaluation of backscattering coefficients and polarimetric decomposition parameters for marsh vegetation mapping using multi-sensor and multi-frequency SAR imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-20Full publication date if available
- Authors
-
Bolin Fu, Huajian Li, Man Liu, Hang Yao, Ertao Gao, Weiwei Sun, Shurong Zhang, Donglin FanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecolind.2023.111246Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecolind.2023.111246Direct OA link when available
- Concepts
-
Polarimetry, Remote sensing, Vegetation (pathology), Wetland, Marsh, Environmental science, Synthetic aperture radar, Ranging, Contextual image classification, C band, Computer science, Geology, Artificial intelligence, Image (mathematics), Scattering, Ecology, Geodesy, Physics, Biology, Optics, Medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388839464 |
|---|---|
| doi | https://doi.org/10.1016/j.ecolind.2023.111246 |
| ids.doi | https://doi.org/10.1016/j.ecolind.2023.111246 |
| ids.openalex | https://openalex.org/W4388839464 |
| fwci | 8.83915456 |
| type | article |
| title | Performance evaluation of backscattering coefficients and polarimetric decomposition parameters for marsh vegetation mapping using multi-sensor and multi-frequency SAR images |
| biblio.issue | |
| biblio.volume | 157 |
| biblio.last_page | 111246 |
| biblio.first_page | 111246 |
| topics[0].id | https://openalex.org/T10801 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9847999811172485 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C28493345 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7844398617744446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899381 |
| concepts[0].display_name | Polarimetry |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7815778851509094 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C2776133958 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7088382840156555 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7918366 |
| concepts[2].display_name | Vegetation (pathology) |
| concepts[3].id | https://openalex.org/C67715294 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6468023061752319 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170321 |
| concepts[3].display_name | Wetland |
| concepts[4].id | https://openalex.org/C67268981 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6277007460594177 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30198 |
| concepts[4].display_name | Marsh |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5614421367645264 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C87360688 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5051873326301575 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[6].display_name | Synthetic aperture radar |
| concepts[7].id | https://openalex.org/C115051666 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44436272978782654 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6522493 |
| concepts[7].display_name | Ranging |
| concepts[8].id | https://openalex.org/C75294576 |
| concepts[8].level | 3 |
| concepts[8].score | 0.443170428276062 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[8].display_name | Contextual image classification |
| concepts[9].id | https://openalex.org/C63944557 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42004331946372986 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q27786604 |
| concepts[9].display_name | C band |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2901000380516052 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20749107003211975 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1956293284893036 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.16163530945777893 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C191486275 |
| concepts[14].level | 2 |
| concepts[14].score | 0.15261292457580566 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q210028 |
| concepts[14].display_name | Scattering |
| concepts[15].id | https://openalex.org/C18903297 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11325562000274658 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[15].display_name | Ecology |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08581456542015076 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.07469776272773743 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C120665830 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[19].display_name | Optics |
| concepts[20].id | https://openalex.org/C71924100 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[20].display_name | Medicine |
| concepts[21].id | https://openalex.org/C142724271 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[21].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/polarimetry |
| keywords[0].score | 0.7844398617744446 |
| keywords[0].display_name | Polarimetry |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.7815778851509094 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/vegetation |
| keywords[2].score | 0.7088382840156555 |
| keywords[2].display_name | Vegetation (pathology) |
| keywords[3].id | https://openalex.org/keywords/wetland |
| keywords[3].score | 0.6468023061752319 |
| keywords[3].display_name | Wetland |
| keywords[4].id | https://openalex.org/keywords/marsh |
| keywords[4].score | 0.6277007460594177 |
| keywords[4].display_name | Marsh |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.5614421367645264 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[6].score | 0.5051873326301575 |
| keywords[6].display_name | Synthetic aperture radar |
| keywords[7].id | https://openalex.org/keywords/ranging |
| keywords[7].score | 0.44436272978782654 |
| keywords[7].display_name | Ranging |
| keywords[8].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[8].score | 0.443170428276062 |
| keywords[8].display_name | Contextual image classification |
| keywords[9].id | https://openalex.org/keywords/c-band |
| keywords[9].score | 0.42004331946372986 |
| keywords[9].display_name | C band |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.2901000380516052 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.20749107003211975 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.1956293284893036 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.16163530945777893 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/scattering |
| keywords[14].score | 0.15261292457580566 |
| keywords[14].display_name | Scattering |
| keywords[15].id | https://openalex.org/keywords/ecology |
| keywords[15].score | 0.11325562000274658 |
| keywords[15].display_name | Ecology |
| keywords[16].id | https://openalex.org/keywords/geodesy |
| keywords[16].score | 0.08581456542015076 |
| keywords[16].display_name | Geodesy |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.07469776272773743 |
| keywords[17].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.ecolind.2023.111246 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S194154261 |
| locations[0].source.issn | 1470-160X, 1872-7034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1470-160X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecological Indicators |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecological Indicators |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecolind.2023.111246 |
| locations[1].id | pmh:oai:doaj.org/article:def8a802c0724a3f9ef6a77e076b1abe |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ecological Indicators, Vol 157, Iss , Pp 111246- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/def8a802c0724a3f9ef6a77e076b1abe |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5053344101 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3469-1861 |
| authorships[0].author.display_name | Bolin Fu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[0].institutions[0].id | https://openalex.org/I38706770 |
| authorships[0].institutions[0].ror | https://ror.org/03z391397 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guilin University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bolin Fu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[1].author.id | https://openalex.org/A5101927438 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-5510-7903 |
| authorships[1].author.display_name | Huajian Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[1].institutions[0].id | https://openalex.org/I38706770 |
| authorships[1].institutions[0].ror | https://ror.org/03z391397 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guilin University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huajian Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[2].author.id | https://openalex.org/A5100658155 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1335-8218 |
| authorships[2].author.display_name | Man Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[2].affiliations[0].raw_affiliation_string | The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei 5430079, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[2].institutions[1].id | https://openalex.org/I37461747 |
| authorships[2].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Man Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei 5430079, China |
| authorships[3].author.id | https://openalex.org/A5058041620 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7665-3476 |
| authorships[3].author.display_name | Hang Yao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[3].institutions[0].id | https://openalex.org/I38706770 |
| authorships[3].institutions[0].ror | https://ror.org/03z391397 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guilin University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hang Yao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[4].author.id | https://openalex.org/A5023600709 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-1683-3643 |
| authorships[4].author.display_name | Ertao Gao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[4].institutions[0].id | https://openalex.org/I38706770 |
| authorships[4].institutions[0].ror | https://ror.org/03z391397 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guilin University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ertao Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[5].author.id | https://openalex.org/A5050009113 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3399-7858 |
| authorships[5].author.display_name | Weiwei Sun |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China |
| authorships[5].institutions[0].id | https://openalex.org/I109935558 |
| authorships[5].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Ningbo University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Weiwei Sun |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China |
| authorships[6].author.id | https://openalex.org/A5038528725 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7734-1039 |
| authorships[6].author.display_name | Shurong Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[6].institutions[0].id | https://openalex.org/I38706770 |
| authorships[6].institutions[0].ror | https://ror.org/03z391397 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Guilin University of Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shurong Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[7].author.id | https://openalex.org/A5103240935 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2100-6634 |
| authorships[7].author.display_name | Donglin Fan |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I38706770 |
| authorships[7].affiliations[0].raw_affiliation_string | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| authorships[7].institutions[0].id | https://openalex.org/I38706770 |
| authorships[7].institutions[0].ror | https://ror.org/03z391397 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I38706770 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Guilin University of Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Donglin Fan |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecolind.2023.111246 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance evaluation of backscattering coefficients and polarimetric decomposition parameters for marsh vegetation mapping using multi-sensor and multi-frequency SAR images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10801 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| related_works | https://openalex.org/W2783354812, https://openalex.org/W4384112194, https://openalex.org/W2103009189, https://openalex.org/W4312958259, https://openalex.org/W2349383066, https://openalex.org/W1969901537, https://openalex.org/W4328132048, https://openalex.org/W330206223, https://openalex.org/W2968716196, https://openalex.org/W2092478230 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ecolind.2023.111246 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S194154261 |
| best_oa_location.source.issn | 1470-160X, 1872-7034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1470-160X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecological Indicators |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecological Indicators |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecolind.2023.111246 |
| primary_location.id | doi:10.1016/j.ecolind.2023.111246 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S194154261 |
| primary_location.source.issn | 1470-160X, 1872-7034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1470-160X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecological Indicators |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecological Indicators |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecolind.2023.111246 |
| publication_date | 2023-11-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2969945043, https://openalex.org/W3114663661, https://openalex.org/W1984667420, https://openalex.org/W6773799754, https://openalex.org/W3015562698, https://openalex.org/W4283122019, https://openalex.org/W3209258179, https://openalex.org/W2955805844, https://openalex.org/W2082081125, https://openalex.org/W2525592260, https://openalex.org/W3196547638, https://openalex.org/W3010345596, https://openalex.org/W4214672600, https://openalex.org/W3002497127, https://openalex.org/W4220752059, https://openalex.org/W1527181192, https://openalex.org/W3122337162, https://openalex.org/W4224261559, https://openalex.org/W2885735575, https://openalex.org/W2342893289, https://openalex.org/W2897522160, https://openalex.org/W2735488265, https://openalex.org/W2078587853, https://openalex.org/W1970492939, https://openalex.org/W2914201981, https://openalex.org/W2081597720, https://openalex.org/W2156665896, https://openalex.org/W2919115771, https://openalex.org/W4308105857, https://openalex.org/W2885118097, https://openalex.org/W2793091350, https://openalex.org/W6801546078, https://openalex.org/W3136563782, https://openalex.org/W3016345523, https://openalex.org/W2653148934, https://openalex.org/W2628798896, https://openalex.org/W2079299474, https://openalex.org/W1720665043, https://openalex.org/W3037788579, https://openalex.org/W2165698076, https://openalex.org/W6801882512, https://openalex.org/W4366606769, https://openalex.org/W2811244448, https://openalex.org/W2993751684, https://openalex.org/W4313408697, https://openalex.org/W2943749046, https://openalex.org/W2945316973, https://openalex.org/W4313229413, https://openalex.org/W2991488782, https://openalex.org/W2143354507, https://openalex.org/W2919263690, https://openalex.org/W4313214158, https://openalex.org/W4327909682, https://openalex.org/W2395579298, https://openalex.org/W3169100537, https://openalex.org/W2915971115, https://openalex.org/W4381272625, https://openalex.org/W4308118031, https://openalex.org/W3094775289, https://openalex.org/W2774571784, https://openalex.org/W4380683565, https://openalex.org/W2912244485, https://openalex.org/W2063826668, https://openalex.org/W3041133507, https://openalex.org/W3200987065, https://openalex.org/W1421632428, https://openalex.org/W3006066376, https://openalex.org/W3203247629 |
| referenced_works_count | 68 |
| abstract_inverted_index.% | 182 |
| abstract_inverted_index.= | 206 |
| abstract_inverted_index.> | 218 |
| abstract_inverted_index.a | 258 |
| abstract_inverted_index.%; | 185 |
| abstract_inverted_index.C- | 104 |
| abstract_inverted_index.OA | 177 |
| abstract_inverted_index.PS | 198 |
| abstract_inverted_index.We | 82 |
| abstract_inverted_index.an | 176 |
| abstract_inverted_index.in | 75, 149 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 23, 36, 46, 53, 91, 119, 225, 246, 254 |
| abstract_inverted_index.to | 8, 42, 127, 161, 183 |
| abstract_inverted_index.(1) | 140 |
| abstract_inverted_index.(2) | 186 |
| abstract_inverted_index.(3) | 208 |
| abstract_inverted_index.(4) | 235 |
| abstract_inverted_index.(OA | 205, 217 |
| abstract_inverted_index.For | 163 |
| abstract_inverted_index.SAR | 55, 98, 102, 134, 143, 167, 190, 210, 229, 242, 250 |
| abstract_inverted_index.The | 136, 141, 187, 236, 252 |
| abstract_inverted_index.and | 14, 20, 33, 49, 66, 87, 97, 105, 107, 196, 220, 249, 266 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.for | 5, 28, 71, 261 |
| abstract_inverted_index.its | 108 |
| abstract_inverted_index.the | 3, 29, 89, 132, 154, 164, 201, 213, 221, 226, 232 |
| abstract_inverted_index.two | 84 |
| abstract_inverted_index.(OA) | 157 |
| abstract_inverted_index.(PS) | 70 |
| abstract_inverted_index.(RS) | 65 |
| abstract_inverted_index.(X-, | 103 |
| abstract_inverted_index.0.24 | 181 |
| abstract_inverted_index.0.74 | 160 |
| abstract_inverted_index.2.41 | 184 |
| abstract_inverted_index.ALOS | 68 |
| abstract_inverted_index.This | 39, 112 |
| abstract_inverted_index.from | 122, 159, 180 |
| abstract_inverted_index.good | 146 |
| abstract_inverted_index.same | 133, 165, 227 |
| abstract_inverted_index.that | 245 |
| abstract_inverted_index.this | 255 |
| abstract_inverted_index.with | 153, 175 |
| abstract_inverted_index.(TS), | 61 |
| abstract_inverted_index.0.8), | 219 |
| abstract_inverted_index.0.88. | 162 |
| abstract_inverted_index.basis | 4, 260 |
| abstract_inverted_index.marsh | 72, 120, 151 |
| abstract_inverted_index.paper | 113 |
| abstract_inverted_index.study | 40, 256 |
| abstract_inverted_index.that: | 139 |
| abstract_inverted_index.three | 142 |
| abstract_inverted_index.under | 131 |
| abstract_inverted_index.C-band | 63 |
| abstract_inverted_index.China. | 81 |
| abstract_inverted_index.Honghe | 76 |
| abstract_inverted_index.L-band | 67, 197 |
| abstract_inverted_index.Nature | 78 |
| abstract_inverted_index.X-band | 59 |
| abstract_inverted_index.better | 193, 214 |
| abstract_inverted_index.carbon | 12 |
| abstract_inverted_index.change | 263 |
| abstract_inverted_index.images | 126, 130, 144, 191, 199, 211, 230 |
| abstract_inverted_index.longer | 188 |
| abstract_inverted_index.0.871); | 207 |
| abstract_inverted_index.L-band) | 106 |
| abstract_inverted_index.Wetland | 0 |
| abstract_inverted_index.ability | 148, 224 |
| abstract_inverted_index.between | 95, 241, 247 |
| abstract_inverted_index.change, | 11 |
| abstract_inverted_index.climate | 10 |
| abstract_inverted_index.dynamic | 21 |
| abstract_inverted_index.explore | 43 |
| abstract_inverted_index.further | 114 |
| abstract_inverted_index.highest | 202 |
| abstract_inverted_index.images, | 56, 110, 168 |
| abstract_inverted_index.images. | 251 |
| abstract_inverted_index.mapping | 19, 74 |
| abstract_inverted_index.optical | 96, 248 |
| abstract_inverted_index.overall | 155 |
| abstract_inverted_index.provide | 257 |
| abstract_inverted_index.ranging | 158, 179 |
| abstract_inverted_index.results | 137, 240, 253 |
| abstract_inverted_index.sensors | 243 |
| abstract_inverted_index.wetland | 6, 24, 37, 262 |
| abstract_inverted_index.National | 77 |
| abstract_inverted_index.PALSAR-2 | 69 |
| abstract_inverted_index.Reserve, | 79 |
| abstract_inverted_index.TerraSAR | 60 |
| abstract_inverted_index.accuracy | 204 |
| abstract_inverted_index.compared | 115 |
| abstract_inverted_index.examined | 88 |
| abstract_inverted_index.learning | 238 |
| abstract_inverted_index.maintain | 15 |
| abstract_inverted_index.obtained | 212 |
| abstract_inverted_index.produced | 192 |
| abstract_inverted_index.proposed | 83 |
| abstract_inverted_index.realized | 200 |
| abstract_inverted_index.regulate | 9 |
| abstract_inverted_index.results, | 195 |
| abstract_inverted_index.sensors, | 99 |
| abstract_inverted_index.sensors. | 135 |
| abstract_inverted_index.transfer | 237 |
| abstract_inverted_index.Northeast | 80 |
| abstract_inverted_index.addressed | 41 |
| abstract_inverted_index.different | 100, 233 |
| abstract_inverted_index.effective | 30 |
| abstract_inverted_index.essential | 27 |
| abstract_inverted_index.frequency | 166, 228 |
| abstract_inverted_index.including | 57 |
| abstract_inverted_index.indicated | 138 |
| abstract_inverted_index.parameter | 125 |
| abstract_inverted_index.performed | 145 |
| abstract_inverted_index.Radarsat-2 | 64 |
| abstract_inverted_index.Therefore, | 17 |
| abstract_inverted_index.accuracies | 156 |
| abstract_inverted_index.derivative | 109 |
| abstract_inverted_index.ecosystems | 7 |
| abstract_inverted_index.monitoring | 22, 264 |
| abstract_inverted_index.parameters | 52, 171 |
| abstract_inverted_index.scientific | 259 |
| abstract_inverted_index.vegetation | 1, 25, 73, 93, 121, 152 |
| abstract_inverted_index.wavelength | 189 |
| abstract_inverted_index.coefficient | 129 |
| abstract_inverted_index.development | 35 |
| abstract_inverted_index.ecosystems. | 38 |
| abstract_inverted_index.feasibility | 90 |
| abstract_inverted_index.frequencies | 101 |
| abstract_inverted_index.identifying | 150 |
| abstract_inverted_index.improvement | 178 |
| abstract_inverted_index.management, | 31 |
| abstract_inverted_index.performance | 45, 118 |
| abstract_inverted_index.restoration | 32 |
| abstract_inverted_index.strategies, | 86 |
| abstract_inverted_index.sustainable | 34, 267 |
| abstract_inverted_index.coefficients | 48, 174 |
| abstract_inverted_index.conservation | 265 |
| abstract_inverted_index.development. | 268 |
| abstract_inverted_index.frequencies; | 234 |
| abstract_inverted_index.outperformed | 172, 231, 244 |
| abstract_inverted_index.polarimetric | 50, 123, 169 |
| abstract_inverted_index.biodiversity. | 16 |
| abstract_inverted_index.decomposition | 51, 124, 170 |
| abstract_inverted_index.respectively. | 111 |
| abstract_inverted_index.sequestration | 13 |
| abstract_inverted_index.backscattering | 47, 128, 173 |
| abstract_inverted_index.classification | 44, 117, 147, 194, 203, 223, 239 |
| abstract_inverted_index.high-precision | 18 |
| abstract_inverted_index.classifications | 94, 216 |
| abstract_inverted_index.multi-frequency | 54 |
| abstract_inverted_index.Full-polarimetric | 209 |
| abstract_inverted_index.full-polarimetric | 62 |
| abstract_inverted_index.transfer-learning | 85, 92, 116, 215, 222 |
| abstract_inverted_index.single-polarimetric | 58 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5050009113 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I109935558 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.97510484 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |