Performance monitoring leveraging advanced AI technique with CNN Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7930556
The main goal of this project is to study and develop a reliable nondestructive testing (NDT)-based structural performance prediction model framework leveraging the advanced machine learning convolutional neural network (CNN) technique and rapid crack evaluation system. There are two steps of application CNN technique in this project: 1) the first step is to identify delamination, noise, and the unexpected signal produced by the existing damage identification algorithm to improve the accuracy of NDT results. The input image or training data of NDT data for CNN is comprehensively studied with several features, such as the duration of the signal, the starting time of the signal, the resolution of images, and the number of images. 2) The second step is to study damage prediction with four different stress levels. The FE model is used to simulate structural performance with different delamination conditions. Moreover, except for field test results, the artificial delamination model is created. We performed numerous finite element (FE) simulation to create inputs for CNN for damage detection. The result shows improved NDT results, and CNN can achieve structural performance prediction. We performed six tasks based on these objectives: Task 1. literature review; Task 2. Collect data from bridges; Task 3. perform filed test NDT results; Task 4. Develop FE model based on field test results; Task 5. development of a machine learning model for damage prediction.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://zenodo.org/record/7930556
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393829247
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393829247Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7930556Digital Object Identifier
- Title
-
Performance monitoring leveraging advanced AI technique with CNNWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-01Full publication date if available
- Authors
-
Suyun Ham, Stefan A. Romanoschi, Yin Wu, Dafnik Saril Kumar David, Sanggoo KangList of authors in order
- Landing page
-
https://zenodo.org/record/7930556Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/7930556Direct OA link when available
- Concepts
-
Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393829247 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7930556 |
| ids.doi | https://doi.org/10.5281/zenodo.7930556 |
| ids.openalex | https://openalex.org/W4393829247 |
| fwci | |
| type | dataset |
| title | Performance monitoring leveraging advanced AI technique with CNN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10763 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.24279999732971191 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Digital Transformation in Industry |
| topics[1].id | https://openalex.org/T13812 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.2354000061750412 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1407 |
| topics[1].subfield.display_name | Organizational Behavior and Human Resource Management |
| topics[1].display_name | AI and HR Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6193473935127258 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3762322664260864 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6193473935127258 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.3762322664260864 |
| keywords[1].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:zenodo.org:7930556 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://zenodo.org/record/7930556 |
| locations[1].id | doi:10.5281/zenodo.7930556 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | dataset |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.7930556 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5008037215 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6375-211X |
| authorships[0].author.display_name | Suyun Ham |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suyun Ham |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035618839 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3051-3320 |
| authorships[1].author.display_name | Stefan A. Romanoschi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stefan Romanoschi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101199453 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yin Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yin Chao Wu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5011148714 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-4324-9495 |
| authorships[3].author.display_name | Dafnik Saril Kumar David |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dafnik Saril Kumar David |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5029225859 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Sanggoo Kang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sanggoo Kang |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/7930556 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance monitoring leveraging advanced AI technique with CNN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10763 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.24279999732971191 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Digital Transformation in Industry |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:zenodo.org:7930556 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/7930556 |
| primary_location.id | pmh:oai:zenodo.org:7930556 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://zenodo.org/record/7930556 |
| publication_date | 2022-08-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 219 |
| abstract_inverted_index.1) | 47 |
| abstract_inverted_index.1. | 189 |
| abstract_inverted_index.2) | 113 |
| abstract_inverted_index.2. | 193 |
| abstract_inverted_index.3. | 199 |
| abstract_inverted_index.4. | 206 |
| abstract_inverted_index.5. | 216 |
| abstract_inverted_index.FE | 128, 208 |
| abstract_inverted_index.We | 152, 180 |
| abstract_inverted_index.as | 92 |
| abstract_inverted_index.by | 61 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.is | 6, 51, 85, 117, 130, 150 |
| abstract_inverted_index.of | 3, 40, 71, 80, 95, 101, 106, 111, 218 |
| abstract_inverted_index.on | 185, 211 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.to | 7, 52, 67, 118, 132, 159 |
| abstract_inverted_index.CNN | 42, 84, 163, 174 |
| abstract_inverted_index.NDT | 72, 81, 171, 203 |
| abstract_inverted_index.The | 0, 74, 114, 127, 167 |
| abstract_inverted_index.and | 9, 31, 56, 108, 173 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.can | 175 |
| abstract_inverted_index.for | 83, 142, 162, 164, 223 |
| abstract_inverted_index.six | 182 |
| abstract_inverted_index.the | 22, 48, 57, 62, 69, 93, 96, 98, 102, 104, 109, 146 |
| abstract_inverted_index.two | 38 |
| abstract_inverted_index.(FE) | 157 |
| abstract_inverted_index.Task | 188, 192, 198, 205, 215 |
| abstract_inverted_index.data | 79, 82, 195 |
| abstract_inverted_index.four | 123 |
| abstract_inverted_index.from | 196 |
| abstract_inverted_index.goal | 2 |
| abstract_inverted_index.main | 1 |
| abstract_inverted_index.step | 50, 116 |
| abstract_inverted_index.such | 91 |
| abstract_inverted_index.test | 144, 202, 213 |
| abstract_inverted_index.this | 4, 45 |
| abstract_inverted_index.time | 100 |
| abstract_inverted_index.used | 131 |
| abstract_inverted_index.with | 88, 122, 136 |
| abstract_inverted_index.(CNN) | 29 |
| abstract_inverted_index.There | 36 |
| abstract_inverted_index.based | 184, 210 |
| abstract_inverted_index.crack | 33 |
| abstract_inverted_index.field | 143, 212 |
| abstract_inverted_index.filed | 201 |
| abstract_inverted_index.first | 49 |
| abstract_inverted_index.image | 76 |
| abstract_inverted_index.input | 75 |
| abstract_inverted_index.model | 19, 129, 149, 209, 222 |
| abstract_inverted_index.rapid | 32 |
| abstract_inverted_index.shows | 169 |
| abstract_inverted_index.steps | 39 |
| abstract_inverted_index.study | 8, 119 |
| abstract_inverted_index.tasks | 183 |
| abstract_inverted_index.these | 186 |
| abstract_inverted_index.create | 160 |
| abstract_inverted_index.damage | 64, 120, 165, 224 |
| abstract_inverted_index.except | 141 |
| abstract_inverted_index.finite | 155 |
| abstract_inverted_index.inputs | 161 |
| abstract_inverted_index.neural | 27 |
| abstract_inverted_index.noise, | 55 |
| abstract_inverted_index.number | 110 |
| abstract_inverted_index.result | 168 |
| abstract_inverted_index.second | 115 |
| abstract_inverted_index.signal | 59 |
| abstract_inverted_index.stress | 125 |
| abstract_inverted_index.Collect | 194 |
| abstract_inverted_index.Develop | 207 |
| abstract_inverted_index.achieve | 176 |
| abstract_inverted_index.develop | 10 |
| abstract_inverted_index.element | 156 |
| abstract_inverted_index.images, | 107 |
| abstract_inverted_index.images. | 112 |
| abstract_inverted_index.improve | 68 |
| abstract_inverted_index.levels. | 126 |
| abstract_inverted_index.machine | 24, 220 |
| abstract_inverted_index.network | 28 |
| abstract_inverted_index.perform | 200 |
| abstract_inverted_index.project | 5 |
| abstract_inverted_index.review; | 191 |
| abstract_inverted_index.several | 89 |
| abstract_inverted_index.signal, | 97, 103 |
| abstract_inverted_index.studied | 87 |
| abstract_inverted_index.system. | 35 |
| abstract_inverted_index.testing | 14 |
| abstract_inverted_index.accuracy | 70 |
| abstract_inverted_index.advanced | 23 |
| abstract_inverted_index.bridges; | 197 |
| abstract_inverted_index.created. | 151 |
| abstract_inverted_index.duration | 94 |
| abstract_inverted_index.existing | 63 |
| abstract_inverted_index.identify | 53 |
| abstract_inverted_index.improved | 170 |
| abstract_inverted_index.learning | 25, 221 |
| abstract_inverted_index.numerous | 154 |
| abstract_inverted_index.produced | 60 |
| abstract_inverted_index.project: | 46 |
| abstract_inverted_index.reliable | 12 |
| abstract_inverted_index.results, | 145, 172 |
| abstract_inverted_index.results. | 73 |
| abstract_inverted_index.results; | 204, 214 |
| abstract_inverted_index.simulate | 133 |
| abstract_inverted_index.starting | 99 |
| abstract_inverted_index.training | 78 |
| abstract_inverted_index.Moreover, | 140 |
| abstract_inverted_index.algorithm | 66 |
| abstract_inverted_index.different | 124, 137 |
| abstract_inverted_index.features, | 90 |
| abstract_inverted_index.framework | 20 |
| abstract_inverted_index.performed | 153, 181 |
| abstract_inverted_index.technique | 30, 43 |
| abstract_inverted_index.artificial | 147 |
| abstract_inverted_index.detection. | 166 |
| abstract_inverted_index.evaluation | 34 |
| abstract_inverted_index.leveraging | 21 |
| abstract_inverted_index.literature | 190 |
| abstract_inverted_index.prediction | 18, 121 |
| abstract_inverted_index.resolution | 105 |
| abstract_inverted_index.simulation | 158 |
| abstract_inverted_index.structural | 16, 134, 177 |
| abstract_inverted_index.unexpected | 58 |
| abstract_inverted_index.(NDT)-based | 15 |
| abstract_inverted_index.application | 41 |
| abstract_inverted_index.conditions. | 139 |
| abstract_inverted_index.development | 217 |
| abstract_inverted_index.objectives: | 187 |
| abstract_inverted_index.performance | 17, 135, 178 |
| abstract_inverted_index.prediction. | 179, 225 |
| abstract_inverted_index.delamination | 138, 148 |
| abstract_inverted_index.convolutional | 26 |
| abstract_inverted_index.delamination, | 54 |
| abstract_inverted_index.identification | 65 |
| abstract_inverted_index.nondestructive | 13 |
| abstract_inverted_index.comprehensively | 86 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |