Performance of community health workers and associated factors in responding to yellow fever and COVID-19 outbreaks: A case study of Masaka District, Uganda, 2022 Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.37432/jieph-d-24-02003
Introduction: Community health workers (CHWs), also known as Village Health Teams (VHTs) in Uganda, play a crucial role in delivering healthcare to communities with limited access to formal health facilities. Their role in responding to yellow fever and COVID-19 outbreaks remains inadequately documented. This study examined the performance of Community Health Workers (CHWs) and associated factors in responding to the aforementioned outbreaks in Masaka District, Uganda. Methods: A cross-sectional study was conducted in Masaka District using quantitative methods. A total of 427 CHWs were selected using stratified random sampling. Performance was assessed using 10 key indicators based on CHWs’ roles in outbreak response, high performance was defined as scoring six or more. Data were analyzed using STATA version 14.0. Poisson regression with robust standard errors was employed to identify factors associated with CHW performance and to estimate crude and adjusted prevalence ratios (PRs) with 95% confidence intervals. Results: Most respondents 279(65.3%) were females, 325(76.1%) depended on agriculture and 337(78.9%) lived in rural areas. The majority, 320 (74.9%), demonstrated high performance in responding to yellow fever and COVID-19 outbreaks. Key facilitators of performance included provision of record books (APR= 1.23; 95% CI: [1.06-1.43]), support supervision (APR=1.43; 95% CI: [1.04-1.96]), recognition by health workers (APR= 1.37; 95% CI; [1.02-1.85]), and receipt of financial incentives (APR=1.16; 95% CI: [1.04-1.30]). Barriers included use of foot as means of transport (CPR=0.69; 95% CI: [0.58-0.84]), never refunded transport costs to attend supervision meeting (CPR=0.72; 95% CI: [0.64-0.81]) and shortage of PPE (CPR=0.78; 95% CI: [0.71-0.86]). Conclusion: CHWs demonstrated high performance in yellow fever and COVID-19 outbreak response, driven by training, recognition and case reporting tools. Both intrinsic (training, recognition) and extrinsic (financial incentives) motivators are essential for enhancing CHWs’ performance. The Ministry of Health and stakeholders should invest in sustainable incentives and continuous capacity-building for CHWs to strengthen disease outbreak responses in low-resource settings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.37432/jieph-d-24-02003
- OA Status
- diamond
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411675831
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411675831Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.37432/jieph-d-24-02003Digital Object Identifier
- Title
-
Performance of community health workers and associated factors in responding to yellow fever and COVID-19 outbreaks: A case study of Masaka District, Uganda, 2022Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-26Full publication date if available
- Authors
-
Nicholas Muhumuza, Eric Segujja, Abel Wilson Walekhwa, Angela Kisakye, Brenda Nakazibwe, Prossy Nakito, Charity Mutesi, Carolyne Nyamar, Sarah Paige, Suzanne N. KiwanukaList of authors in order
- Landing page
-
https://doi.org/10.37432/jieph-d-24-02003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.37432/jieph-d-24-02003Direct OA link when available
- Concepts
-
Outbreak, Environmental health, Coronavirus disease 2019 (COVID-19), Socioeconomics, Medicine, Virology, Disease, Infectious disease (medical specialty), Sociology, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411675831 |
|---|---|
| doi | https://doi.org/10.37432/jieph-d-24-02003 |
| ids.doi | https://doi.org/10.37432/jieph-d-24-02003 |
| ids.openalex | https://openalex.org/W4411675831 |
| fwci | 0.0 |
| type | article |
| title | Performance of community health workers and associated factors in responding to yellow fever and COVID-19 outbreaks: A case study of Masaka District, Uganda, 2022 |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11581 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9657999873161316 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | Viral Infections and Outbreaks Research |
| topics[1].id | https://openalex.org/T10410 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9642999768257141 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2611 |
| topics[1].subfield.display_name | Modeling and Simulation |
| topics[1].display_name | COVID-19 epidemiological studies |
| topics[2].id | https://openalex.org/T10209 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9575999975204468 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Global Maternal and Child Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116675565 |
| concepts[0].level | 2 |
| concepts[0].score | 0.823093831539154 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[0].display_name | Outbreak |
| concepts[1].id | https://openalex.org/C99454951 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6168583035469055 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[1].display_name | Environmental health |
| concepts[2].id | https://openalex.org/C3008058167 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5342580080032349 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[2].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[3].id | https://openalex.org/C45355965 |
| concepts[3].level | 1 |
| concepts[3].score | 0.35334843397140503 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1643441 |
| concepts[3].display_name | Socioeconomics |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3434785008430481 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C159047783 |
| concepts[5].level | 1 |
| concepts[5].score | 0.256367564201355 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[5].display_name | Virology |
| concepts[6].id | https://openalex.org/C2779134260 |
| concepts[6].level | 2 |
| concepts[6].score | 0.08024320006370544 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[6].display_name | Disease |
| concepts[7].id | https://openalex.org/C524204448 |
| concepts[7].level | 3 |
| concepts[7].score | 0.07628634572029114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[7].display_name | Infectious disease (medical specialty) |
| concepts[8].id | https://openalex.org/C144024400 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06193631887435913 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[8].display_name | Sociology |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.058738380670547485 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/outbreak |
| keywords[0].score | 0.823093831539154 |
| keywords[0].display_name | Outbreak |
| keywords[1].id | https://openalex.org/keywords/environmental-health |
| keywords[1].score | 0.6168583035469055 |
| keywords[1].display_name | Environmental health |
| keywords[2].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[2].score | 0.5342580080032349 |
| keywords[2].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[3].id | https://openalex.org/keywords/socioeconomics |
| keywords[3].score | 0.35334843397140503 |
| keywords[3].display_name | Socioeconomics |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.3434785008430481 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/virology |
| keywords[5].score | 0.256367564201355 |
| keywords[5].display_name | Virology |
| keywords[6].id | https://openalex.org/keywords/disease |
| keywords[6].score | 0.08024320006370544 |
| keywords[6].display_name | Disease |
| keywords[7].id | https://openalex.org/keywords/infectious-disease |
| keywords[7].score | 0.07628634572029114 |
| keywords[7].display_name | Infectious disease (medical specialty) |
| keywords[8].id | https://openalex.org/keywords/sociology |
| keywords[8].score | 0.06193631887435913 |
| keywords[8].display_name | Sociology |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.058738380670547485 |
| keywords[9].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.37432/jieph-d-24-02003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235220 |
| locations[0].source.issn | 2664-2824 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2664-2824 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Interventional Epidemiology and Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310311037 |
| locations[0].source.host_organization_name | African Field Epidemiology Network |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311037 |
| locations[0].source.host_organization_lineage_names | African Field Epidemiology Network |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Interventional Epidemiology and Public Health |
| locations[0].landing_page_url | https://doi.org/10.37432/jieph-d-24-02003 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046835044 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nicholas Muhumuza |
| authorships[0].countries | UG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I72227227 |
| authorships[0].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[0].institutions[0].country_code | UG |
| authorships[0].institutions[0].display_name | Makerere University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicholas Muhumuza |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences |
| authorships[1].author.id | https://openalex.org/A5077145678 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Eric Segujja |
| authorships[1].countries | UG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I72227227 |
| authorships[1].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[1].institutions[0].country_code | UG |
| authorships[1].institutions[0].display_name | Makerere University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eric Segujja |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences |
| authorships[2].author.id | https://openalex.org/A5001033292 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9690-4650 |
| authorships[2].author.display_name | Abel Wilson Walekhwa |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[2].affiliations[0].raw_affiliation_string | Diseases Dynamic Unit, Department of Veterinary Medicine, University of Cambridge, United Kingdom, 3Pathogen Economy Bureau, Science Technology and Innovation Secretariat Office of the President |
| authorships[2].institutions[0].id | https://openalex.org/I241749 |
| authorships[2].institutions[0].ror | https://ror.org/013meh722 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Cambridge |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abel Wilson Walekhwa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Diseases Dynamic Unit, Department of Veterinary Medicine, University of Cambridge, United Kingdom, 3Pathogen Economy Bureau, Science Technology and Innovation Secretariat Office of the President |
| authorships[3].author.id | https://openalex.org/A5077007161 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2222-9450 |
| authorships[3].author.display_name | Angela Kisakye |
| authorships[3].countries | UG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210161606, https://openalex.org/I72227227 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences; African Field Epidemiology Network, Lugogo House, Plot 42, Lugogo Bypass, Kampala, Uganda |
| authorships[3].institutions[0].id | https://openalex.org/I4210161606 |
| authorships[3].institutions[0].ror | https://ror.org/0590kp014 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210161606 |
| authorships[3].institutions[0].country_code | UG |
| authorships[3].institutions[0].display_name | African Field Epidemiology Network |
| authorships[3].institutions[1].id | https://openalex.org/I72227227 |
| authorships[3].institutions[1].ror | https://ror.org/03dmz0111 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I72227227 |
| authorships[3].institutions[1].country_code | UG |
| authorships[3].institutions[1].display_name | Makerere University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Angela Kisakye |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences; African Field Epidemiology Network, Lugogo House, Plot 42, Lugogo Bypass, Kampala, Uganda |
| authorships[4].author.id | https://openalex.org/A5057032469 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Brenda Nakazibwe |
| authorships[4].affiliations[0].raw_affiliation_string | Pathogen Economy Bureau, Science Technology and Innovation Secretariat Office of the President, Kampala Uganda |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Brenda Nakazibwe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Pathogen Economy Bureau, Science Technology and Innovation Secretariat Office of the President, Kampala Uganda |
| authorships[5].author.id | https://openalex.org/A5092831705 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Prossy Nakito |
| authorships[5].countries | UG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[5].institutions[0].id | https://openalex.org/I72227227 |
| authorships[5].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[5].institutions[0].country_code | UG |
| authorships[5].institutions[0].display_name | Makerere University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Prossy Nakito |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[6].author.id | https://openalex.org/A5008094178 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Charity Mutesi |
| authorships[6].countries | UG |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[6].institutions[0].id | https://openalex.org/I72227227 |
| authorships[6].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[6].institutions[0].country_code | UG |
| authorships[6].institutions[0].display_name | Makerere University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Charity Mutesi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[7].author.id | https://openalex.org/A5118645125 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Carolyne Nyamar |
| authorships[7].countries | UG |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[7].institutions[0].id | https://openalex.org/I72227227 |
| authorships[7].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[7].institutions[0].country_code | UG |
| authorships[7].institutions[0].display_name | Makerere University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Carolyne Nyamar |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[8].author.id | https://openalex.org/A5059493751 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2597-7040 |
| authorships[8].author.display_name | Sarah Paige |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[8].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison, United States |
| authorships[8].institutions[0].id | https://openalex.org/I135310074 |
| authorships[8].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sarah Paige |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | University of Wisconsin-Madison, United States |
| authorships[9].author.id | https://openalex.org/A5033786944 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4729-4897 |
| authorships[9].author.display_name | Suzanne N. Kiwanuka |
| authorships[9].countries | UG |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| authorships[9].institutions[0].id | https://openalex.org/I72227227 |
| authorships[9].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[9].institutions[0].country_code | UG |
| authorships[9].institutions[0].display_name | Makerere University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Suzanne Kiwanuka |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Health Policy Planning and Management, Makerere University School of Public Health, College of Health Sciences Kampala, Uganda |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.37432/jieph-d-24-02003 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Performance of community health workers and associated factors in responding to yellow fever and COVID-19 outbreaks: A case study of Masaka District, Uganda, 2022 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11581 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9657999873161316 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | Viral Infections and Outbreaks Research |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.37432/jieph-d-24-02003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235220 |
| best_oa_location.source.issn | 2664-2824 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2664-2824 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Interventional Epidemiology and Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310311037 |
| best_oa_location.source.host_organization_name | African Field Epidemiology Network |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311037 |
| best_oa_location.source.host_organization_lineage_names | African Field Epidemiology Network |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Interventional Epidemiology and Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.37432/jieph-d-24-02003 |
| primary_location.id | doi:10.37432/jieph-d-24-02003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235220 |
| primary_location.source.issn | 2664-2824 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2664-2824 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Interventional Epidemiology and Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310311037 |
| primary_location.source.host_organization_name | African Field Epidemiology Network |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311037 |
| primary_location.source.host_organization_lineage_names | African Field Epidemiology Network |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Interventional Epidemiology and Public Health |
| primary_location.landing_page_url | https://doi.org/10.37432/jieph-d-24-02003 |
| publication_date | 2025-06-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2101032303, https://openalex.org/W3176247578, https://openalex.org/W2751158531, https://openalex.org/W2895226610, https://openalex.org/W3049050121, https://openalex.org/W3137631518, https://openalex.org/W2898704223, https://openalex.org/W4289170432, https://openalex.org/W2954336395, https://openalex.org/W1825836510, https://openalex.org/W4220813438, https://openalex.org/W2114661412, https://openalex.org/W2604101886, https://openalex.org/W4321613082, https://openalex.org/W3154364631, https://openalex.org/W4220951727 |
| referenced_works_count | 16 |
| abstract_inverted_index.A | 67, 78 |
| abstract_inverted_index.a | 15 |
| abstract_inverted_index.10 | 93 |
| abstract_inverted_index.as | 7, 107, 221 |
| abstract_inverted_index.by | 199, 262 |
| abstract_inverted_index.in | 12, 18, 32, 56, 62, 72, 100, 160, 170, 254, 292, 305 |
| abstract_inverted_index.of | 48, 80, 180, 184, 209, 219, 223, 243, 286 |
| abstract_inverted_index.on | 97, 155 |
| abstract_inverted_index.or | 110 |
| abstract_inverted_index.to | 21, 26, 34, 58, 127, 135, 172, 233, 300 |
| abstract_inverted_index.320 | 165 |
| abstract_inverted_index.427 | 81 |
| abstract_inverted_index.95% | 144, 189, 195, 204, 213, 226, 238, 246 |
| abstract_inverted_index.CHW | 132 |
| abstract_inverted_index.CI: | 190, 196, 214, 227, 239, 247 |
| abstract_inverted_index.CI; | 205 |
| abstract_inverted_index.Key | 178 |
| abstract_inverted_index.PPE | 244 |
| abstract_inverted_index.The | 163, 284 |
| abstract_inverted_index.and | 37, 53, 134, 138, 157, 175, 207, 241, 257, 265, 273, 288, 295 |
| abstract_inverted_index.are | 278 |
| abstract_inverted_index.for | 280, 298 |
| abstract_inverted_index.key | 94 |
| abstract_inverted_index.six | 109 |
| abstract_inverted_index.the | 46, 59 |
| abstract_inverted_index.use | 218 |
| abstract_inverted_index.was | 70, 90, 105, 125 |
| abstract_inverted_index.Both | 269 |
| abstract_inverted_index.CHWs | 82, 250, 299 |
| abstract_inverted_index.Data | 112 |
| abstract_inverted_index.Most | 148 |
| abstract_inverted_index.This | 43 |
| abstract_inverted_index.also | 5 |
| abstract_inverted_index.case | 266 |
| abstract_inverted_index.foot | 220 |
| abstract_inverted_index.high | 103, 168, 252 |
| abstract_inverted_index.play | 14 |
| abstract_inverted_index.role | 17, 31 |
| abstract_inverted_index.were | 83, 113, 151 |
| abstract_inverted_index.with | 23, 121, 131, 143 |
| abstract_inverted_index.(APR= | 187, 202 |
| abstract_inverted_index.(PRs) | 142 |
| abstract_inverted_index.1.23; | 188 |
| abstract_inverted_index.1.37; | 203 |
| abstract_inverted_index.14.0. | 118 |
| abstract_inverted_index.STATA | 116 |
| abstract_inverted_index.Teams | 10 |
| abstract_inverted_index.Their | 30 |
| abstract_inverted_index.based | 96 |
| abstract_inverted_index.books | 186 |
| abstract_inverted_index.costs | 232 |
| abstract_inverted_index.crude | 137 |
| abstract_inverted_index.fever | 36, 174, 256 |
| abstract_inverted_index.known | 6 |
| abstract_inverted_index.lived | 159 |
| abstract_inverted_index.means | 222 |
| abstract_inverted_index.more. | 111 |
| abstract_inverted_index.never | 229 |
| abstract_inverted_index.roles | 99 |
| abstract_inverted_index.rural | 161 |
| abstract_inverted_index.study | 44, 69 |
| abstract_inverted_index.total | 79 |
| abstract_inverted_index.using | 75, 85, 92, 115 |
| abstract_inverted_index.(CHWs) | 52 |
| abstract_inverted_index.(VHTs) | 11 |
| abstract_inverted_index.Health | 9, 50, 287 |
| abstract_inverted_index.Masaka | 63, 73 |
| abstract_inverted_index.access | 25 |
| abstract_inverted_index.areas. | 162 |
| abstract_inverted_index.attend | 234 |
| abstract_inverted_index.driven | 261 |
| abstract_inverted_index.errors | 124 |
| abstract_inverted_index.formal | 27 |
| abstract_inverted_index.health | 2, 28, 200 |
| abstract_inverted_index.invest | 291 |
| abstract_inverted_index.random | 87 |
| abstract_inverted_index.ratios | 141 |
| abstract_inverted_index.record | 185 |
| abstract_inverted_index.robust | 122 |
| abstract_inverted_index.should | 290 |
| abstract_inverted_index.tools. | 268 |
| abstract_inverted_index.yellow | 35, 173, 255 |
| abstract_inverted_index.(CHWs), | 4 |
| abstract_inverted_index.CHWs’ | 98, 282 |
| abstract_inverted_index.Poisson | 119 |
| abstract_inverted_index.Uganda, | 13 |
| abstract_inverted_index.Uganda. | 65 |
| abstract_inverted_index.Village | 8 |
| abstract_inverted_index.Workers | 51 |
| abstract_inverted_index.crucial | 16 |
| abstract_inverted_index.defined | 106 |
| abstract_inverted_index.disease | 302 |
| abstract_inverted_index.factors | 55, 129 |
| abstract_inverted_index.limited | 24 |
| abstract_inverted_index.meeting | 236 |
| abstract_inverted_index.receipt | 208 |
| abstract_inverted_index.remains | 40 |
| abstract_inverted_index.scoring | 108 |
| abstract_inverted_index.support | 192 |
| abstract_inverted_index.version | 117 |
| abstract_inverted_index.workers | 3, 201 |
| abstract_inverted_index.(74.9%), | 166 |
| abstract_inverted_index.Barriers | 216 |
| abstract_inverted_index.COVID-19 | 38, 176, 258 |
| abstract_inverted_index.District | 74 |
| abstract_inverted_index.Methods: | 66 |
| abstract_inverted_index.Ministry | 285 |
| abstract_inverted_index.Results: | 147 |
| abstract_inverted_index.adjusted | 139 |
| abstract_inverted_index.analyzed | 114 |
| abstract_inverted_index.assessed | 91 |
| abstract_inverted_index.depended | 154 |
| abstract_inverted_index.employed | 126 |
| abstract_inverted_index.estimate | 136 |
| abstract_inverted_index.examined | 45 |
| abstract_inverted_index.females, | 152 |
| abstract_inverted_index.identify | 128 |
| abstract_inverted_index.included | 182, 217 |
| abstract_inverted_index.methods. | 77 |
| abstract_inverted_index.outbreak | 101, 259, 303 |
| abstract_inverted_index.refunded | 230 |
| abstract_inverted_index.selected | 84 |
| abstract_inverted_index.shortage | 242 |
| abstract_inverted_index.standard | 123 |
| abstract_inverted_index.Community | 1, 49 |
| abstract_inverted_index.District, | 64 |
| abstract_inverted_index.conducted | 71 |
| abstract_inverted_index.enhancing | 281 |
| abstract_inverted_index.essential | 279 |
| abstract_inverted_index.extrinsic | 274 |
| abstract_inverted_index.financial | 210 |
| abstract_inverted_index.intrinsic | 270 |
| abstract_inverted_index.majority, | 164 |
| abstract_inverted_index.outbreaks | 39, 61 |
| abstract_inverted_index.provision | 183 |
| abstract_inverted_index.reporting | 267 |
| abstract_inverted_index.response, | 102, 260 |
| abstract_inverted_index.responses | 304 |
| abstract_inverted_index.sampling. | 88 |
| abstract_inverted_index.settings. | 307 |
| abstract_inverted_index.training, | 263 |
| abstract_inverted_index.transport | 224, 231 |
| abstract_inverted_index.(APR=1.16; | 212 |
| abstract_inverted_index.(APR=1.43; | 194 |
| abstract_inverted_index.(CPR=0.69; | 225 |
| abstract_inverted_index.(CPR=0.72; | 237 |
| abstract_inverted_index.(CPR=0.78; | 245 |
| abstract_inverted_index.(financial | 275 |
| abstract_inverted_index.(training, | 271 |
| abstract_inverted_index.279(65.3%) | 150 |
| abstract_inverted_index.325(76.1%) | 153 |
| abstract_inverted_index.337(78.9%) | 158 |
| abstract_inverted_index.associated | 54, 130 |
| abstract_inverted_index.confidence | 145 |
| abstract_inverted_index.continuous | 296 |
| abstract_inverted_index.delivering | 19 |
| abstract_inverted_index.healthcare | 20 |
| abstract_inverted_index.incentives | 211, 294 |
| abstract_inverted_index.indicators | 95 |
| abstract_inverted_index.intervals. | 146 |
| abstract_inverted_index.motivators | 277 |
| abstract_inverted_index.outbreaks. | 177 |
| abstract_inverted_index.prevalence | 140 |
| abstract_inverted_index.regression | 120 |
| abstract_inverted_index.responding | 33, 57, 171 |
| abstract_inverted_index.stratified | 86 |
| abstract_inverted_index.strengthen | 301 |
| abstract_inverted_index.Conclusion: | 249 |
| abstract_inverted_index.Performance | 89 |
| abstract_inverted_index.agriculture | 156 |
| abstract_inverted_index.communities | 22 |
| abstract_inverted_index.documented. | 42 |
| abstract_inverted_index.facilities. | 29 |
| abstract_inverted_index.incentives) | 276 |
| abstract_inverted_index.performance | 47, 104, 133, 169, 181, 253 |
| abstract_inverted_index.recognition | 198, 264 |
| abstract_inverted_index.respondents | 149 |
| abstract_inverted_index.supervision | 193, 235 |
| abstract_inverted_index.sustainable | 293 |
| abstract_inverted_index.[0.64-0.81]) | 240 |
| abstract_inverted_index.demonstrated | 167, 251 |
| abstract_inverted_index.facilitators | 179 |
| abstract_inverted_index.inadequately | 41 |
| abstract_inverted_index.low-resource | 306 |
| abstract_inverted_index.performance. | 283 |
| abstract_inverted_index.quantitative | 76 |
| abstract_inverted_index.recognition) | 272 |
| abstract_inverted_index.stakeholders | 289 |
| abstract_inverted_index.Introduction: | 0 |
| abstract_inverted_index.[0.58-0.84]), | 228 |
| abstract_inverted_index.[0.71-0.86]). | 248 |
| abstract_inverted_index.[1.02-1.85]), | 206 |
| abstract_inverted_index.[1.04-1.30]). | 215 |
| abstract_inverted_index.[1.04-1.96]), | 197 |
| abstract_inverted_index.[1.06-1.43]), | 191 |
| abstract_inverted_index.aforementioned | 60 |
| abstract_inverted_index.cross-sectional | 68 |
| abstract_inverted_index.capacity-building | 297 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.30532629 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |